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Outline for today:

e Some examples of latent variable models
e A template: The Neyman-Scott “paradox” and marginalization
e Bayesian versus frequentist approaches to marginalization

e The classical EM algorithm (in brief)

Next week, we will build on these ideas to present more general variational inference.



Latent variable models: Microcredit effectiveness

Randomized controlled trials were run in
seven different countries to measure the
effect of access to microcredit on business
profits. In each country, thousands of
businesses were observed. These businesses =

share common, unobserved attributes of \\g‘, {s
their particular country. [Meager, 2020]

The different levels of profit and

microcredit effectiveness in each country w
are latent variables. We wish to infer the

overall average effectiveness of microcredit,

which is common to all observations.



Latent variable models: Mouse geonmics

A set of mice were infected with an
influenza virus, and the expression level for
a large number of genes were measured
over time. We wish to cluster together
genes that have similarly shaped expression
time series. [Luan and Li, 2003]

The cluster identities (archetypical time
series of expression levels) are common to
all observations. Which cluster a particular
gene belongs to is a latent variable.



Latent variable models: Astronomical catalogs

The Sloan Digital Sky Survey
systematically photographed the night sky
from the earth’s surface. Astronomers wish
to create a catalog of stars and galaxies
and their properties that can be searched
through and analyzed statistically, e.g. for
evidence of dark matter. [Regier et al.,
2019]

Each individual image contains distortion
from that particular night's atmosphere
and telescope configuration. The shape
and identity of the astronomical objects are
latent variables, and the distortion is

common to all astronomical objects in a

particular image. The typical shape and

variability of the distortion is common to
all images.



Latent variable models

Each of these models exhibits

e High dimensional “local” latent structure
e Low-dimensional “global” parameters of primary interest

e Possibly complicated dependence between the two (knowledge of the local
variables informs the value of the globals, and vice-versa)



...or “Why don't we always use the maximum likelihood estimator?”

The “paradox” is built around a toy model. For some unknown z, and 6, draw

Yna‘znye NN(Zma)
Ynb|Zn, 0 NN(Zme)

Draw N such pairs, each with its own z,. The task is to infer 6.
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The “paradox” is built around a toy model. For some unknown z, and 6, draw

Yna‘znye NN(Zma)
Ynb|Zn, 0 NN(Zme)

Draw N such pairs, each with its own z,. The task is to infer 6.

Observations: y = (y11, ¥1b, - - - s YNa, YNb)
Unknown latent variables: z = (z1,...,yn)

Unknown global parameter: 6 € R
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}’na|2n79"‘N(Zn79) an‘znveNN(vae)

Let's use that old workhorse, the maximum likelihood estimator (MLE)!
(Spoiler: Something will go wrong.)

The normal distribution gives (up to constants):
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Exercise: Find an expression for 2,.



The Neyman-Scott “paradox”

Exercise: Find an expression for 2.

dlog p(yl0, z)
0zn

dlog p(Yna, Ynb|0, 2n)
0zn

0=

2,0
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Wonderful! This is a very sensible expression, and it doesn't depend on 0.
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Exercise: Find an expression for 2.
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= - 671()’!13 - 2!1) - 971(}’nb - 2n) =

1
Zn = E(}’na + }’nb)~

Wonderful! This is a very sensible expression, and it doesn't depend on 0.

Exercise: Using this result, find an expression for a.

Hint: (yna — fn)2 = (Ynb — 2/7)2 = % (Yna — }’nb)2



The Neyman-Scott “paradox”

Exercise: Find an expression for 6.

Hint: (yna — 2n)° = (Yab — 2)° = % (Yna — Ynb)?
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The Neyman-Scott “paradox”

Exercise: Find an expression for 6.

Hint: (yna — 2n)° = (Yab — 2)° = % (Yna — Ynb)?
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Exercise: Suppose the true parameters are 0y and zy. What is limy_, 07

Hint: Use the law of large numbers.



The Neyman-Scott “paradox”

Exercise: What is the behavior of § for large N7 By the law of large numbers,

G_lly
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= The MLE is inconsistent. What went wrong?
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The Neyman-Scott “paradox”

The MLE is inconsistent. What went wrong?

R 1
Zn = 5(}’/73 + }’nb)
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e Our estimates for the latent variables 2, are quite uncertain
(they use only two observations each).

e But our MLE estimate for d treated the Zp as if they were
known exactly. l.e., our MLE estimator assumed less dispersion
around Z, than was truly present.

e Consequently, we under-estimated the dispersion 0p.

e To avoid this problem, we must account for the uncertainty in
zp when estimating 6.

Solution: Marginalize: Integrate out the uncertainty in the z,.



The Neyman-Scott “paradox”

To marginalize we must:

e Add a distributional assumption z|0 ~ p(z|6).
e Compute the marginal p(y|0) = [ p(y|0, z)p(z|0)dz.

o Compute the marginal MLE § = argmax, p(y|6)
o (Contrast with 4,2 = argmax, , p(y|0, z))



The Neyman-Scott “paradox”

To marginalize we must:

e Add a distributional assumption z|0 ~ p(z|6).
e Compute the marginal p(y|0) = [ p(y|0, z)p(z|0)dz.
o Compute the marginal MLE § = argmax, p(y|6)
e (Contrast with 0,2 = argmax, , p(y|0, z))
Neyman-Scott resolved

Let's let z, ~ /\/(07 1). Then, by standard properties of the normal,

()=e((2)(11 1))

Sample covariances of the bivariate normal are consistent, so the marginal MLE

N
0:= arg;naleog/P(yna7ynb|97zn)p(zn)dzn

n=1

is consistent.



Marginalization: General setup

In general notation, we want to infer 6 from

Observations: y = (y1,...,Yn)
Unknown latent variables: z = (z1,. .., zy)

Unknown global parameter: 6 € RrP
We have learned that

Bad: 0,2 = argmaxlog p(y|6, z)
0,z

Good: 6= argmaxlog/p(yw7 z)p(z|6)dz.
0



Marginalization: General setup

In general notation, we want to infer 6 from

Observations: y = (y1,...,Yn)
Unknown latent variables: z = (z1,. .., zy)

Unknown global parameter: 6 € RrP
We have learned that

Bad: 0,2 = argmaxlog p(y|6, z)
0,z

Good: 6= argmaxlog/p(yw7 z)p(z|6)dz.
0

There are two problems:
e Need to posit p(z|0)
e Need to compute [ p(y|6,z)p(z|0)dz

We will only deal with the second problem in these two talks, assuming we have a
p(z|0) we are willing to live with.

In general, the integral is hard!



Bayesian statistics has marginalization built in

Link to optional blog post on frequentist vs Bayesian statistics


https://rgiordan.github.io/bayes/2019/08/30/bayesian_as_inverse_problem.html

Bayesian statistics has marginalization built in

Recall that a Bayesian model posits a full generative process:
0~p(0)  zl0~p(z10)  ylz,0~p(y|z,0)
and forms the posterior

p(y18, z)p(z]6)p(8)
I [ p(yl6’, 2" )p(z'|6")p(6")d6" dz’

p(0,zly) =
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e Bayesians are forced to posit p(z|6)
e Forming the posterior is equivalent to using the marginal p(y|6)



Bayesian statistics has marginalization built in

Recall that a Bayesian model posits a full generative process:
0~p(0)  zl0~p(z10)  ylz,0~p(y|z,0)
and forms the posterior

pPyl0, z)p(z|6)p(6)
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= Bayesian methods do not suffer from the Neyman-Scott problem.

e Bayesians are forced to posit p(z|6)

e Forming the posterior is equivalent to using the marginal p(y|6)

But the integral is still hard! Full Bayesian solutions typically require Markov Chain
Monte Carlo, which is slow and sampling based.

Are there faster alternatives, based on optimization? Hint: Yes.



Marginalization: The EM algorithm

One “frequentist” method for optimizing the marginal likelihood is the famous

expectation-maximization (EM) algorithm.
The EM algorithm works / is useful when:

e The joint log probability log p(y|0, z) + log p(z|0) is easy to write down

e The posterior p(z|y,0) is easy to compute
e The marginalizing integral p(y|0) = [ p(y|6, z)p(z|0)dz is hard
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One “frequentist” method for optimizing the marginal likelihood is the famous
expectation-maximization (EM) algorithm.

The EM algorithm works / is useful when:

e The joint log probability log p(y|0, z) + log p(z|0) is easy to write down
e The posterior p(z|y,0) is easy to compute
e The marginalizing integral p(y|0) = [ p(y|6, z)p(z|0)dz is hard

The EM algorithm alternates between two steps. Starting at an iterate é(;), repeat
until convergence:

The E-step: Compute Q;y(0) := E  [logp(y|0, z) + log p(z]0)]
p(zly.0

The M-step: Compute the next iterate é(,+1) := argmax, Q(;)(0)

Note that everything in the E- and M-steps are “easy.” Nevertheless, the iterates é(i)
converge to a (possibly local) optimum of the marginal log likelihood log p(y|0).

Exercise: Prove that the EM algorithm gives a consistent estimator for the
Neyman-Scott paradox.



Next week: Actual variational inference

Next week we will:

e Prove that the EM algorithm works (in a non-standard way)
e |dentify a lie | told on the last slide
e Generalize to cases when the posterior p(z|y, 0) is difficult to compute

This last point will finally bring us to the set of techniques commonly called
“variational inference.”
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