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Outline

Outline for today:

� Some examples of latent variable models

� A template: The Neyman-Scott “paradox” and marginalization

� Bayesian versus frequentist approaches to marginalization

� The classical EM algorithm (in brief)

Next week, we will build on these ideas to present more general variational inference.

1



Latent variable models: Microcredit effectiveness

Randomized controlled trials were run in

seven different countries to measure the

effect of access to microcredit on business

profits. In each country, thousands of

businesses were observed. These businesses

share common, unobserved attributes of

their particular country. [Meager, 2020]

The different levels of profit and

microcredit effectiveness in each country

are latent variables. We wish to infer the

overall average effectiveness of microcredit,

which is common to all observations.
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Latent variable models: Mouse geonmics

A set of mice were infected with an

influenza virus, and the expression level for

a large number of genes were measured

over time. We wish to cluster together

genes that have similarly shaped expression

time series. [Luan and Li, 2003]

The cluster identities (archetypical time

series of expression levels) are common to

all observations. Which cluster a particular

gene belongs to is a latent variable.
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Latent variable models: Astronomical catalogs

The Sloan Digital Sky Survey

systematically photographed the night sky

from the earth’s surface. Astronomers wish

to create a catalog of stars and galaxies

and their properties that can be searched

through and analyzed statistically, e.g. for

evidence of dark matter. [Regier et al.,

2019]

Each individual image contains distortion

from that particular night’s atmosphere

and telescope configuration. The shape

and identity of the astronomical objects are

latent variables, and the distortion is

common to all astronomical objects in a

particular image. The typical shape and

variability of the distortion is common to

all images.
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Latent variable models

Each of these models exhibits

� High dimensional “local” latent structure

� Low-dimensional “global” parameters of primary interest

� Possibly complicated dependence between the two (knowledge of the local

variables informs the value of the globals, and vice-versa)
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The Neyman-Scott “paradox”

...or “Why don’t we always use the maximum likelihood estimator?”

The “paradox” is built around a toy model. For some unknown zn and θ, draw

yna|zn, θ ∼ N (zn, θ)

ynb|zn, θ ∼ N (zn, θ)

Draw N such pairs, each with its own zn. The task is to infer θ.

Observations: y = (y11, y1b, . . . , yNa, yNb)

Unknown latent variables: z = (z1, . . . , yN)

Unknown global parameter: θ ∈ R
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The Neyman-Scott “paradox”

yna|zn, θ ∼ N (zn, θ) ynb|zn, θ ∼ N (zn, θ)

Let’s use that old workhorse, the maximum likelihood estimator (MLE)!

(Spoiler: Something will go wrong.)

The normal distribution gives (up to constants):

log p(yna, ynb|θ, zn) = −
1

2
θ−1 (yna − zn)2 −

1

2
logθ −

1

2
θ−1 (ynb − zn)2 −

1

2
log θ

So the log likelihood is given by

log p(y |θ, z) =
N∑

n=1

log p(yna, ynb|θ, zn)

The MLE is given by:

θ̂, ẑ := argmax
θ,z

log p(y |θ, z) ⇔
∂ log p(y |θ, z)

∂(θ, z)

∣∣∣∣
θ̂,ẑ

= 0

Exercise: Find an expression for ẑn.
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The Neyman-Scott “paradox”

Exercise: Find an expression for ẑn.

0 =
∂ log p(y |θ, z)

∂zn

∣∣∣∣
ẑ,θ̂

=
∂ log p(yna, ynb|θ, zn)

∂zn

∣∣∣∣
ẑ,θ̂

=
∂

∂zn

(
−

1

2
θ−1 (yna − zn)2 −

1

2
log θ −

1

2
θ−1 (ynb − zn)2 −

1

2
log θ

) ∣∣∣∣∣
ẑ,θ̂

= − θ̂−1(yna − ẑn)− θ̂−1(ynb − ẑn)⇒

ẑn =
1

2
(yna + ynb).

Wonderful! This is a very sensible expression, and it doesn’t depend on θ̂.

Exercise: Using this result, find an expression for θ̂.

Hint: (yna − ẑn)2 = (ynb − ẑn)2 = 1
4

(yna − ynb)2
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The Neyman-Scott “paradox”

Exercise: Find an expression for θ̂.

Hint: (yna − ẑn)2 = (ynb − ẑn)2 = 1
4

(yna − ynb)2

0 =
∂ log p(y |θ, z)

∂θ

∣∣∣∣
ẑ,θ̂

=
∂

∂θ

N∑
n=1

(
−

1

2
θ−1 (yna − zn)2 −

1

2
log θ −

1

2
θ−1 (ynb − zn)2 −

1

2
log θ

) ∣∣∣∣∣
ẑ,θ̂

=
N∑

n=1

(
1

2
θ̂−2 1

4
(yna − ynb)2 −

1

2
θ̂−1 +

1

2
θ̂−2 1

4
(yna − ynb)2 −

1

2
θ̂−1

)

= θ̂−2 1

4

N∑
n=1

(yna − ynb)2 − N θ̂−1 ⇒

θ̂ =
1

4

1

N

N∑
n=1

(yna − ynb)2 .

Exercise: Suppose the true parameters are θ0 and z0. What is limN→∞ θ̂?

Hint: Use the law of large numbers.
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The Neyman-Scott “paradox”

Exercise: What is the behavior of θ̂ for large N? By the law of large numbers,

θ̂ =
1

4

1

N

N∑
n=1

(yna − ynb)2

prob−−−−→
N→∞

1

4
E

p(y|θ0,z0)

[
(yna − ynb)2

]
=

1

4
E

p(y|θ0,z0)

[
(yna − z0n − (ynb − z0n))2

]
=

1

4

(
E

p(y|θ0,z0)

[
(yna − z0n)2

]
+ E

p(y|θ0,z0)

[
(ynb − z0n)2

]
+

2 E
p(y|θ0,z0)

[(yna − z0n)(ynb − z0n)]

)

=
1

4
(θ0 + θ0 + 0)

=
θ0

2
6= θ0.

⇒ The MLE is inconsistent. What went wrong?
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The Neyman-Scott “paradox”

The MLE is inconsistent. What went wrong?

ẑn =
1

2
(yna + ynb)

θ̂
prob−−−−→

N→∞

θ0

2
6= θ0

� Our estimates for the latent variables ẑn are quite uncertain

(they use only two observations each).

� But our MLE estimate for θ̂ treated the ẑn as if they were

known exactly. I.e., our MLE estimator assumed less dispersion

around ẑn than was truly present.

� Consequently, we under-estimated the dispersion θ0.

� To avoid this problem, we must account for the uncertainty in

zn when estimating θ.

Solution: Marginalize: Integrate out the uncertainty in the zn.
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ẑn =
1

2
(yna + ynb)

θ̂
prob−−−−→

N→∞

θ0

2
6= θ0

� Our estimates for the latent variables ẑn are quite uncertain
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The Neyman-Scott “paradox”

To marginalize we must:

� Add a distributional assumption z|θ ∼ p(z|θ).

� Compute the marginal p(y |θ) =
∫
p(y |θ, z)p(z|θ)dz.

� Compute the marginal MLE θ̂ = argmaxθ p(y |θ)

� (Contrast with θ̂, ẑ = argmaxθ,z p(y |θ, z))

Neyman-Scott resolved

Let’s let zn ∼ N (0, 1). Then, by standard properties of the normal,(
yna
ynb

)
iid∼ N

((
0

0

)
,

(
1 + θ 1

1 1 + θ

))

Sample covariances of the bivariate normal are consistent, so the marginal MLE

θ̂ := argmax
θ

N∑
n=1

log

∫
p(yna, ynb|θ, zn)p(zn)dzn

is consistent.
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Marginalization: General setup

In general notation, we want to infer θ from

Observations: y = (y1, . . . , yN)

Unknown latent variables: z = (z1, . . . , zN)

Unknown global parameter: θ ∈ RD

We have learned that

Bad: θ̂, ẑ = argmax
θ,z

log p(y |θ, z)

Good: θ̂ = argmax
θ

log

∫
p(y |θ, z)p(z|θ)dz.

There are two problems:

� Need to posit p(z|θ)

� Need to compute
∫
p(y |θ, z)p(z|θ)dz

We will only deal with the second problem in these two talks, assuming we have a

p(z|θ) we are willing to live with.

In general, the integral is hard!

13



Marginalization: General setup

In general notation, we want to infer θ from

Observations: y = (y1, . . . , yN)

Unknown latent variables: z = (z1, . . . , zN)

Unknown global parameter: θ ∈ RD

We have learned that

Bad: θ̂, ẑ = argmax
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Bayesian statistics has marginalization built in

Link to optional blog post on frequentist vs Bayesian statistics
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Bayesian statistics has marginalization built in

Recall that a Bayesian model posits a full generative process:

θ ∼ p(θ) z|θ ∼ p(z|θ) y |z, θ ∼ p(y |z, θ)

and forms the posterior

p(θ, z|y) =
p(y |θ, z)p(z|θ)p(θ)∫ ∫

p(y |θ′, z ′)p(z ′|θ′)p(θ′)dθ′dz ′

⇒ p(θ|y) =

∫
p(θ, z|y)dz =

∫
p(y |θ, z)p(z|θ)p(θ) dz∫ ∫

p(y |θ′, z ′)p(z ′|θ′)p(θ′)dθ′dz ′

=

(∫
p(y |θ, z)p(z|θ)dz

)
p(θ)∫ (∫

p(y |θ′, z ′)p(z ′|θ′)dz ′
)
p(θ′)dθ′

=
p(y |θ)p(θ)∫

p(y |θ′)p(θ′)dθ′
.

⇒ Bayesian methods do not suffer from the Neyman-Scott problem.

� Bayesians are forced to posit p(z|θ)

� Forming the posterior is equivalent to using the marginal p(y |θ)

But the integral is still hard! Full Bayesian solutions typically require Markov Chain

Monte Carlo, which is slow and sampling based.

Are there faster alternatives, based on optimization? Hint: Yes.
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Marginalization: The EM algorithm

One “frequentist” method for optimizing the marginal likelihood is the famous

expectation-maximization (EM) algorithm.

The EM algorithm works / is useful when:

� The joint log probability log p(y |θ, z) + log p(z|θ) is easy to write down

� The posterior p(z|y , θ) is easy to compute

� The marginalizing integral p(y |θ) =
∫
p(y |θ, z)p(z|θ)dz is hard

The EM algorithm alternates between two steps. Starting at an iterate θ̂(i), repeat

until convergence:

The E-step: Compute Q(i)(θ) := E
p(z|y,θ̂(i))

[log p(y |θ, z) + log p(z|θ)]

The M-step: Compute the next iterate θ̂(i+1) := argmaxθ Q(i)(θ)

Note that everything in the E- and M-steps are “easy.” Nevertheless, the iterates θ̂(i)

converge to a (possibly local) optimum of the marginal log likelihood log p(y |θ).

Exercise: Prove that the EM algorithm gives a consistent estimator for the

Neyman-Scott paradox.
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Next week: Actual variational inference

Next week we will:

� Prove that the EM algorithm works (in a non-standard way)

� Identify a lie I told on the last slide

� Generalize to cases when the posterior p(z|y , θ) is difficult to compute

This last point will finally bring us to the set of techniques commonly called

“variational inference.”
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