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Outline

Outline for today:

� What counts as variational inference?

� Kullback-Leibler (KL) divergence and “standard” variational inference

� The classical EM algorithm as a special case of variational inference

� Variational inference as a generalization of the EM algorithm

� Some examples of VI in practice
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What counts as variational inference?

Lots of very different procedures go by the name “variational inference.” I propose an

(idosyncratic) enompassing definition based on the use cases and the name:

Variational inference is inference using optimization.

Think “calculus of variations:” an optimum x̂ = argmax
θ

f (x) is characterized by

df /dx |x̂ = 0, i.e. where small variations in x̂ result in no changes to the value of f (x̂).

f (x)

x

x̂

Exercise: By this definition, which of these are VI?

� The maximum likelihood estimator (MLE).

� The Laplace approximation to a Bayesian posterior.

� Markov chain Monte Carlo (MCMC).
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What counts as variational inference?

A more common definition of VI is the following.

Suppose we have a random variable ξ and a distribution p(ξ) that we want to know.

Let y denote data and θ a parameter. Examples:

� The variable is θ, and we wish to know the posterior p(θ|y) (Bayes)

� The variable is y , and we wish to know p(y) (MLE)

� The variable is y , and we wish to know the map θ 7→ p(y |θ) =
∫
p(y , z|θ)dz

(marginal MLE)

Let Q be some class of distributions which may or may not contain p(ξ).

Variational inference finds the distribution in Q closest to p according to some

measure of “divergence” between distributions:

q∗ = argmin
q∈Q

D(q, p).

The most common choice of “divergence” is the Kullback-Leibler (KL) divergence,

though other choices are possible (e.g. Li and Turner [2016], Liu and Wang [2016],

Ambrogioni et al. [2018]).
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KL divergence

The KL divergence is defined as:

KL (q||p) := E
q(ξ)

[log q(ξ)]− E
q(ξ)

[log p(ξ)]

Some key attributes of KL divergence:

� KL (q||p) ≥ 0

� KL (q||p) = 0⇒ p = q

� KL (q||p) 6= KL (p||q)

� KL (q||p) is a “strict” measure of closeness [Gibbs and Su, 2002]

Why use KL divergence?

Phony answer: The KL divergence has an information theoretic interpretation

[Kullback and Leibler, 1951].

Real answer: Mathematical convenience (normalizing constants pop out).

Example: The MLE minimizes KL divergence. Suppose that xn
iid∼ p(·), and

q(·|θ) ∈ Q is a (possibly misspecified) parameteric family of data distributions. Then

argmin
θ

KL (p||q) = argmin
θ

(
− E

p(x1)
[log q(x1|θ)] + E

p(x1)
[log p(x1)]

)

= argmax
θ

E
p(x1)

[log q(x1|θ)] ≈ argmax
θ

1

N

N∑
n=1

log q(xn|θ) = θ̂ (the MLE).
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KL divergence exercises

KL (q(θ)||p(θ)) =

− E
q(θ)

[log p(θ)] + E
q(θ)

[log q(θ)]

p(θ) = Correlated bivariate normal

Q = {All bivariate normals}

What is q∗(θ) = argmin
q∈Q

KL (q(θ)||p(θ))?

θ2

θ1

p(θ)

q∗(θ)

Sufficiently expressive families recover the target distribution.
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KL divergence exercises

KL (q(θ)||p(θ)) =

− E
q(θ)

[log p(θ)] + E
q(θ)

[log q(θ)]

p(θ) = Correlated bivariate normal

Q = {Point masses}

What is q∗(θ) = argmin
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θ2

θ1

p(θ)

UNDEFINED

Without a common dominating measure, the KL divergence is undefined.
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KL divergence exercises

KL (q(θ)||p(θ)) =

− E
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p(θ) = Correlated bivariate normal
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p(θ)

q∗(θ)

Sufficently concentrated distributions with constant entropy act like a point mass

at the maximum of log p(θ).
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Recall the EM algorithm

Observations: y = (y1, . . . , yN)

Unknown latent variables: z = (z1, . . . , zN)

Unknown global parameter: θ ∈ RD . We want: θ̂ = argmax
θ

log p(y |θ).

The EM algorithm alternates between two steps. Starting at an iterate θ̂(i), repeat

until convergence:

The E-step: Compute Q(i)(θ) := E
p(z|y,θ̂(i))

[log p(y |θ, z) + log p(z|θ)]

The M-step: Compute the next iterate θ̂(i+1) := argmax
θ

Q(i)(θ)

The EM algorithm works / is useful when:

� The joint log probability log p(y |θ, z) + log p(z|θ) is easy to write down

� The posterior p(z|y , θ) is easy to compute

� The marginalizing integral p(y |θ) =
∫
p(y |θ, z)p(z|θ)dz is hard

Is the EM algorithm VI? Can you spot the lie?
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The EM algorithm as VI

Let Qz denote a family of distributions on z, parameterized by a finite-dimensional

parameter η, such that p(z|θ, y) ∈ Qz for the observed y and all θ.

Exercise: When does Qz exist? (Indexed by a finite-dimensional parameter η.)

Let q(z|η̂(θ)) := p(z|θ, y).

In an abuse of notation, write η ∈ Qz for η ∈ {η : q(z|η) ∈ Qz}.

Then:

log p(y |θ) = log p(y |θ) + KL (q(z|η̂(θ))||p(z|θ, y))

= log p(y |θ) + argmax
η∈Qz

(−KL (q(z|η)||p(z|θ, y))) F

= argmax
η∈Qz

(log p(y |θ)−KL (q(z|η)||p(z|θ, y)))

= argmax
η∈Qz

(
log p(y |θ) + E

q(z|η)
[log p(z|θ, y)− log q(z|η)]

)
= argmax

η∈Qz

(
E

q(z|η)
[log p(y |θ) + log p(z|θ, y)− log q(z|η)]

)
= argmax

η∈Qz

(
E

q(z|η)
[log p(y , z|θ)]− E

q(z|η)
[log q(z|η)]

)
FF
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The EM algorithm as VI

From the previous slide, the marginal MLE is given by

θ̂ := argmax
θ

log p(y |θ)

= argmax
θ

argmax
η∈Qz

(log p(y |θ)−KL (q(z|η)||p(z|θ, y))) F

= argmax
θ

argmax
η∈Qz

(
E

q(z|η)
[log p(y , z|θ)] + E

q(z|η)
[log q(z|η)]

)
FF

The EM algorithm revisited. Starting at an iterate θ̂(i):

The E-step:

1. For a fixed θ̂(i), optimize F for η. Since only the KL divergence depends on η,

the optimum is η̂(θ̂(i)), and q(z|η̂(θ̂(i))) = p(z|θ̂(i), y).

2. Then use η̂(θ̂(i)) to compute the expectation in FF as a function of θ.

The M-step: Keeping η fixed at η̂(θ̂(i))), optimize FF as a function of θ to give θ̂i+1.

The entropy E
q(z|η)

[log q(z|η)] does not depend on θ and can be ignored.

⇒ The EM algorithm is coordinate ascent on the objective

f (θ, η) = log p(y |θ)−KL (q(z|η)||p(z|θ, y)) .
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The M-step: Keeping η fixed at η̂(θ̂(i))), optimize FF as a function of θ to give θ̂i+1.

The entropy E
q(z|η)

[log q(z|η)] does not depend on θ and can be ignored.

⇒ The EM algorithm is coordinate ascent on the objective

f (θ, η) = log p(y |θ)−KL (q(z|η)||p(z|θ, y)) .

14



The EM algorithm as VI

θ̂, η̂ := argmax
θ,η∈Qz

(log p(y |θ)−KL (q(z|η)||p(z|θ, y))) .

The EM algorithm is coordinate ascent on the preceding objective.

[Neal and Hinton, 1998]

Corollaries:

� The EM algorithm converges to a local optimum of log p(y |θ).

� The EM algorithm is VI, and you don’t need to optimize with coordinate ascent.

� If both p(z|θ, y) and p(z, y |θ) are easy, then so is p(y |θ). (This was the lie.)

� Exercise: Prove this a different way using exponential families (in real-life problems,

p(z|y , θ) is only really tractable in exponential families).

� If p(z|θ, y) is intractable, we can now consider different approximating families

which may not contain p(z|θ, y).
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Different approximating families: Point masses on z.

Suppose instead of Qz we used Qpm
z , a family of constant-entropy near-point mass

distributions on z, located at some free parameter η.

Then

argmax
θ,η∈Qpm

z

(log p(y |θ)−KL (q(z|η)||p(z|θ, y)))

= argmax
θ,η∈Qpm

z

(
E

q(z|η)
[log p(y , z|θ)] + E

q(z|η)
[log q(z|η)]

)

= argmax
θ,η∈Qpm

z

(
E

q(z|η)
[log p(y , z|θ)]

)
= argmax

θ,z
log p(y , z|θ).

⇒ The Neyman-Scott paradox occurs because point masses are poor

approximations for the distribution p(z|θ, y).

Exercise: Recall that the Neyman-Scott paradox disappears when, instead of pairs,

we have many observations, all from the same zn. Can you use the VI perspective on

the marginal EM algorithm to explain this phenomenon?
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Different approximating families: Point masses on θ.

Let Qpm
θ denote a family of constant-entropy near-point mass distributions on θ,

located at some free parameter ϑ. Assume a uniform prior on θ.

Then:

argmax
θ,η∈Qz

(log p(y |θ)−KL (q(z|η)||p(z|θ, y)))

= argmax
ϑ∈Qpm

θ
,η∈Qz

(
E

q(θ|ϑ)
[log p(y |θ)]− E

q(θ|ϑ)
[log q(θ|ϑ)]−KL (q(z|η)||p(z|θ, y))

)
= argmax
ϑ∈Qpm

θ
,η∈Qz

KL (q(θ|ϑ)q(z|η)||p(z, θ|y)) .

⇒ The marginal MLE is a point-mass approximation to the posterior with a

uniform prior. It will be a good approximation when p(θ|y) is approximately a point

mass.

Exercise: Under what circumstances is p(θ|y) is approximately a point mass?
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Different approximating families.

Suppose we can’t compute p(z|θ, y) and / or we think that p(θ|y) may not be

well-approximated by a point mass.

Choose some tractable approximating family q(θ, z|γ) ∈ Qθz . Then find

γ̂ := argmin
γ∈Qθz

KL (q(θ, z|γ)||p(θ, z|y)) .

Now we’re doing “Variational Bayes” (VB).

The EM algorithm — and, indeed, the MLE — can be understood as Variational

Bayes with a uniform prior and particular choices of approximating distributions.
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Different approximating families.

Some common approximating families:

� Factorizing families, e.g. q(θ, z|γ) = q(θ|γ)q(z|γ). These families model some
components of the posterior as independent.

� For historical reasons, this is known as a mean-field approximation [Wainwright and

Jordan, 2008].

� Factorizing families + an exponential family assumption.

� Normal approximations (possibly after an invertible unconstraining

transformation): q(θ, z|γ) = N (θ, z|γ).

� Independent normal approximations. This is used by a lot of “black-box VI”

methods [Ranganath et al., 2014, Kucukelbir et al., 2017].

What do you need from an approximating family? Expressivity, plus:

KL (q||p) := E
q(ξ|η)

[log q(ξ|η)]︸ ︷︷ ︸
Tractable entropy

− E
q(ξ|η)

[log p(ξ)]︸ ︷︷ ︸
Tractable expectations

� Monte Carlo is often used for the expectations.
� See, e.g., Ranganath et al. [2014].

� The entropy is harder. In general, there is a tradeoff between expressivity and
tractable entropy.

� “Normalizing flows” are an example of a highly expressive approximating family (neural

nets!) designed to maintain a tractable entropy. [Rezende and Mohamed, 2015]
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VI in practice: The Criteo dataset

As an example application of VB, consider a logistic regression with random effects fit

(generalized linear mixed model) to an internet advertising dataset from Criteo Labs

with N = 61895 datapoints [Giordano et al., 2018, Section 5.3].

We want to estimate:

β : Regression parameters (5-dimensional)

u : Random effects (5000-dimensional)

µ : Random effect mean (intercept)

τ : Random effect precision (inverse variance).

We use the following VB approximation:

We will compare the joint MAP (≈ MLE), MCMC, and the VB approximation.
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VI in practice: The Criteo dataset
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VI in practice: The Criteo dataset

Note that standard mean-field VB under-estimates

posterior covariances. We have a paper about allevi-

ating this problem using “linear response.” [Giordano

et al., 2018]

The Hessian was singular at the MAP, so the Laplace

approximation could not be computed.
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VI in practice: The Criteo dataset

VB is slower than the MAP, but much faster than MCMC.
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VI in practice: Additional results
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Conclusion

� Variational inference can be thought of as approximate marginalization using

optimization.

� Not only is variational inference closely related to familiar existing frequentist

methods (like the EM algorithm), it can help us understand those methods better.

� The key to a good variational approximation is tractable expectations, tractable

entropy, and expressivity.

� It is important to be aware of variational inference’s shortcomings (e.g.,

underestimation of variance in the mean field approximation).

� There are a zillion topics to work on in variational inference. A good place to

start reading is Blei et al. [2017].

Thanks for having me!
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