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Outline for today:

e What counts as variational inference?

o Kullback-Leibler (KL) divergence and “standard” variational inference
e The classical EM algorithm as a special case of variational inference
e Variational inference as a generalization of the EM algorithm

e Some examples of VI in practice



What counts as variational inference?

Lots of very different procedures go by the name ‘variational inference.” | propose an
(idosyncratic) enompassing definition based on the use cases and the name:

Variational inference is inference using optimization.

Think “calculus of variations:” an optimum X = argmax f(x) is characterized by
0

df /dx

% =0, i.e. where small variations in X result in no changes to the value of f(X).
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Exercise: By this definition, which of these are VI?

e The maximum likelihood estimator (MLE).
e The Laplace approximation to a Bayesian posterior.
e Markov chain Monte Carlo (MCMC). 2



What counts as variational inference?

A more common definition of VI is the following.
Suppose we have a random variable ¢ and a distribution p(¢) that we want to know.

Let y denote data and 6 a parameter. Examples:

e The variable is 0, and we wish to know the posterior p(6]y) (Bayes)
e The variable is y, and we wish to know p(y) (MLE)

e The variable is y, and we wish to know the map 0 — p(y|6) = [ p(y, z|0)dz
(marginal MLE)
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measure of “divergence” between distributions:

q" = argmin D(q, p).
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What counts as variational inference?

A more common definition of VI is the following.
Suppose we have a random variable ¢ and a distribution p(¢) that we want to know.
Let y denote data and 6 a parameter. Examples:

e The variable is 0, and we wish to know the posterior p(6]y) (Bayes)

e The variable is y, and we wish to know p(y) (MLE)

e The variable is y, and we wish to know the map 0 — p(y|6) = [ p(y, z|0)dz
(marginal MLE)

Let Q be some class of distributions which may or may not contain p(¢&).

Variational inference finds the distribution in Q closest to p according to some
measure of “divergence” between distributions:

q* = argmin D(q, p).
qeQ
The most common choice of “divergence” is the Kullback-Leibler (KL) divergence,

though other choices are possible (e.g. Li and Turner [2016], Liu and Wang [2016],
Ambrogioni et al. [2018]).



KL divergence

The KL divergence is defined as:

KL (qllp) := q[(Eé) lloga(&)] — qI(ES) [log p(£)]

Some key attributes of KL divergence:

o KL(q[lp) >0
o KL(ql[p) =0=p=q

(allp)
* KL(q|lp) # KL (pl[a)
e KL (q||p) is a “strict” measure of closeness [Gibbs and Su, 2002]
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Real answer: Mathematical convenience (normalizing constants pop out).
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KL (qllp) := q[(Eé) lloga(&)] — qI(ES) [log p(£)]

Some key attributes of KL divergence:

o KL (qllp) >0
o KL(qllp) =0=p=q

(
o KL (qllp) # KL (p[q)
e KL (q||p) is a “strict” measure of closeness [Gibbs and Su, 2002]

Why use KL divergence?

Phony answer: The KL divergence has an information theoretic interpretation
[Kullback and Leibler, 1951].

Real answer: Mathematical convenience (normalizing constants pop out).

Example: The MLE minimizes KL divergence. Suppose that x, ia p(+), and
q(-|0) € Q is a (possibly misspecified) parameteric family of data distributions. Then

argmin KL 9]}a) = argmin (= £ fogatalo)] + £ [ogs(c)] )
[ 0 p(x1) p(x1)

N
1 ~
= argmax E [logq(x1|0)] ~ argmax — E log q(xn|6) = 6 (the MLE).
6 pla) 0 N

n=1



KL divergence exercises
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Without a common dominating measure, the KL divergence is undefined.
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KL divergence exercises

KL (q(0)[|p(9)) =
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Q = {BVN with small, fixed variance}

q*(0)

What is q*(0) = argmin KL (q(6)||p(0))?
qeQ

01

Sufficently concentrated distributions with constant entropy act like a point mass
at the maximum of log p(0).
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Unknown latent variables: z = (z1,..., zy)

Unknown global parameter: # € RP.  We want: § = argmax log p(y|6).
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)



Recall the EM algorithm

Observations: y = (y1,-..,Yn)
Unknown latent variables: z = (z1,..., zy)

Unknown global parameter: # € RP.  We want: § = argmax log p(y|6).
0

The EM algorithm alternates between two steps. Starting at an iterate HA(,-), repeat

until convergence:

The E-step: Compute Q(jy(6) := ( E )[Iog p(y10, z) + log p(z|0)]
p(zly.0;)

The M-step: Compute the next iterate é(,-ﬂ) := argmax Q(;)(0)
)

The EM algorithm works / is useful when:

e The joint log probability log p(y|60, z) + log p(z|0) is easy to write down
e The posterior p(z|y,0) is easy to compute
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Unknown latent variables: z = (z1,..., zy)

Unknown global parameter: # € RP.  We want: § = argmax log p(y|6).
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The EM algorithm alternates between two steps. Starting at an iterate HA(,-), repeat

until convergence:

The E-step: Compute Q(jy(6) := ( E )[Iog p(y10, z) + log p(z|0)]
p(zly.0;)

The M-step: Compute the next iterate é(,-ﬂ) := argmax Q(;)(0)
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The EM algorithm works / is useful when:

e The joint log probability log p(y|60, z) + log p(z|0) is easy to write down
e The posterior p(z|y,0) is easy to compute
e The marginalizing integral p(y|0) = [ p(y|0, z)p(z|0)dz is hard

Is the EM algorithm VI? Can you spot the lie?



The EM algorithm as VI

Let Q, denote a family of distributions on z, parameterized by a finite-dimensional
parameter 7, such that p(z|0, y) € Q. for the observed y and all 6.

Exercise: When does Q; exist? (Indexed by a finite-dimensional parameter 7.)
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The EM algorithm as VI

Let Q, denote a family of distributions on z, parameterized by a finite-dimensional
parameter 7, such that p(z|0, y) € Q. for the observed y and all 6.

Exercise: When does Q; exist? (Indexed by a finite-dimensional parameter 7.)
Let q(z17(0)) = p(z16, y).

In an abuse of notation, write n € Q, for n € {n : q(z|n) € Q.}.

Then:

log p(y|0) = log p(y[0) + KL (a(z|7(0))l|p(2]0. y))
log p(y]6) + argmax (=KL (q(z|n)l|p(2]6, y))) *

nez

= argmax (log p(y|0) — KL (a(z|n)||p(2]0, y)))
neQ,

— argmax (log p(y10) + E [log p(zl0, )  log q(zm)])
neQ, a(z|n)

~ argmax ( E [log p(y|9) + log p(zl6, y)  log q(zm)])
neQ, a(z|n)

:argmax( E [ogp(y,z6)] — E [Iogq(Z\n)]> Ak
neQ, a(z|n) a(z|n)



The EM algorithm as VI

From the previous slide, the marginal MLE is given by

0 := argmax log p(y|6)
0

= argmaxargmax (log p(y[0) — KL (a(z|n)||p(210, ¥))) *
n z
= argmax argmax ( E [logp(y,z|0)]+ E [log q(ZIn)]) * %k
0 neQ, q(z|n) q(z|n)
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The E-step:

1. For a fixed é(,-), optimize % for 7. Since only the KL divergence depends on 7,
the optimum is ﬁ(é( y), and q(z|ﬁ(é ) = p(z|§ y).
2. Then use 7](9( )) to compute the expectation in ** as a function of 6.

The M-step: Keeping 7 fixed at 77(0( y)), optimize %% as a function of 0 to give By
The entropy (]E [log q(z|n)] does not depend on € and can be ignored.
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1. For a fixed é(,-), optimize % for 7. Since only the KL divergence depends on 7,
the optimum is ﬁ(é( y), and q(z|ﬁ(é ) = p(z|§ y).
2. Then use 7](9( )) to compute the expectation in ** as a function of 6.

The M-step: Keeping 7 fixed at 77(0( y)), optimize %% as a function of 0 to give By
The entropy (]E [log q(z|n)] does not depend on € and can be ignored.

= The EM algorithm is coordinate ascent on the objective
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The EM algorithm as VI

8,7 := argmax (log p(y|0) — KL (a(z|n)||p(z]6, ¥))) -
O,neQ,

The EM algorithm is coordinate ascent on the preceding objective.
[Neal and Hinton, 1998]

Corollaries:

e The EM algorithm converges to a local optimum of log p(y|6).

e The EM algorithm is VI, and you don't need to optimize with coordinate ascent.

If both p(z|0,y) and p(z,y|0) are easy, then so is p(y|#). (This was the lie.)

e Exercise: Prove this a different way using exponential families (in real-life problems,
p(z|y, 0) is only really tractable in exponential families).

If p(z|0,y) is intractable, we can now consider different approximating families
which may not contain p(z|0, y).
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= The Neyman-Scott paradox occurs because point masses are poor
approximations for the distribution p(z|6, y).
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Suppose instead of Q, we used QF™, a family of constant-entropy near-point mass
distributions on z, located at some free parameter 7.

Then
argmax (log p(y|0) — KL (a(z[n)l|p(216, y)))
0,meQl™
— argas (B fogply. 0]+ E_lloga(zln)] )
0,neol™ \a(zln) (2\7)
= argmax ( [log p( y,z\@)])
0.negtm \a(z|

= argmax log p(y, z|0).

V4

= The Neyman-Scott paradox occurs because point masses are poor
approximations for the distribution p(z|6, y).

Exercise: Recall that the Neyman-Scott paradox disappears when, instead of pairs,
we have many observations, all from the same z,. Can you use the VI perspective on
the marginal EM algorithm to explain this phenomenon?
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uniform prior. It will be a good approximation when p(0|y) is approximately a point
mass.



Different approximating families: Point masses on 6.

Let ng denote a family of constant-entropy near-point mass distributions on 6,
located at some free parameter ©. Assume a uniform prior on 6.

Then:

argmax (log p(y|0) — KL (a(z[n)l|p(z]6,y)))
0,neEQ;

= argmax ( E [logp(yl0)] - E [logq(elﬁ)l—KL(q(Zln)HP(Z\G,y)Q
f)eggmmgQZ q(0]9) q(019)

= argmax KL (q(¢|9)a(z|n)||p(z,0ly)) -
9eQf " neQ;

= The marginal MLE is a point-mass approximation to the posterior with a
uniform prior. It will be a good approximation when p(0|y) is approximately a point
mass.

Exercise: Under what circumstances is p(0|y) is approximately a point mass?
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Suppose we can't compute p(z|0,y) and / or we think that p(6]y) may not be
well-approximated by a point mass.

Choose some tractable approximating family q(0, z|y) € Qg.. Then find

4 := argmin KL (q(6, z|)[|p(6, zy)) -
YEQp,
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Different approximating families.

Suppose we can't compute p(z|0,y) and / or we think that p(6]y) may not be
well-approximated by a point mass.

Choose some tractable approximating family q(0, z|y) € Qg.. Then find

4 = argmin KL (q(0, z|)[|p(0, zy)) -
v€Q0;
Now we’re doing “Variational Bayes” (VB).

The EM algorithm — and, indeed, the MLE — can be understood as Variational
Bayes with a uniform prior and particular choices of approximating distributions.



Different approximating families.

Some common approximating families:

e Factorizing families, e.g. q(6, z|v) = q(0|v)q(z|y). These families model some
components of the posterior as independent.
e For historical reasons, this is known as a mean-field approximation [Wainwright and
Jordan, 2008].

e Factorizing families 4+ an exponential family assumption.

e Normal approximations (possibly after an invertible unconstraining
transformation): q(0, z|y) = N (6, z|v).

e Independent normal approximations. This is used by a lot of “black-box VI”
methods [Ranganath et al., 2014, Kucukelbir et al., 2017].
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e Factorizing families, e.g. q(6, z|v) = q(0|v)q(z|y). These families model some
components of the posterior as independent.
e For historical reasons, this is known as a mean-field approximation [Wainwright and
Jordan, 2008].

e Factorizing families 4+ an exponential family assumption.

e Normal approximations (possibly after an invertible unconstraining
transformation): q(0, z|y) = N (6, z|v).

e Independent normal approximations. This is used by a lot of “black-box VI”
methods [Ranganath et al., 2014, Kucukelbir et al., 2017].

What do you need from an approximating family? Expressivity, plus:

KL (qllp) := q(gm [loga(&lm)] - q(gn) [log p(&)]

Tractable entropy Tractable expectations

e Monte Carlo is often used for the expectations.
e See, e.g., Ranganath et al. [2014].
e The entropy is harder. In general, there is a tradeoff between expressivity and
tractable entropy.
e “Normalizing flows” are an example of a highly expressive approximating family (neural
nets!) designed to maintain a tractable entropy. [Rezende and Mohamed, 2015]



VI in practice: The Criteo dataset

As an example application of VB, consider a logistic regression with random effects fit
(generalized linear mixed model) to an internet advertising dataset from Criteo Labs
with N = 61895 datapoints [Giordano et al., 2018, Section 5.3].

We want to estimate:

B: Regression parameters (5-dimensional)
u: Random effects (5000-dimensional)
p#:  Random effect mean (intercept)

7: Random effect precision (inverse variance).
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As an example application of VB, consider a logistic regression with random effects fit
(generalized linear mixed model) to an internet advertising dataset from Criteo Labs
with N = 61895 datapoints [Giordano et al., 2018, Section 5.3].

We want to estimate:
B
u:
e

T .

Regression parameters (5-dimensional)
Random effects (5000-dimensional)
Random effect mean (intercept)

Random effect precision (inverse variance).

We use the following VB approximation:

We will compare the joint MAP (~ MLE), MCMC, and the VB approximation.

q(Bk) =N (Brins,). fork=1,.... Kz
q(ue) =N (ug; ), fort =1,...T
q(7) = Gamma (7;7,)
g (p) =N (w5m,)

K, T
q(0)=q(r)q(p) H q(B) H q (ug) .
k=1 t=1
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VI in practice: The Criteo dataset

VB means: global parameters

VB means: random effects
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Figure 13: Comparison of MCMC and MFVB means
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VI in practice: The Criteo dataset

Uncorrected MFVB sd: global parameters

lm
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Uncorrected MFVB sd: random effects
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Note that standard mean-field VB under-estimates o

posterior covariances. We have a paper about allevi-
ating this problem using “linear response.” [Giordano

et al., 2018]

The Hessian was singular at the MAP, so the Laplace

approximation could not be computed.

Posterior
sdof:

o u

Posterior
sdof:

o u
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VI in practice: The Criteo dataset

VB is slower than the MAP, but much faster than MCMC.

Method Seconds
MAP (optimum only) 12
VB (optimum only) 57
VB (including sensitivity for /3) 104
VB (including sensitivity for /5 and u) 553

MCMC (Stan) 21066
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VI in practice: Additional results
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VI in practice: Additional results
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VI in practice: Additional results
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VI in practice: Additional results
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VI in practice: Additional results

Tolal sscands (log10 scale)
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Figure 11: Comparision of timing in ADVI experiments
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Conclusion

e Variational inference can be thought of as approximate marginalization using
optimization.

e Not only is variational inference closely related to familiar existing frequentist
methods (like the EM algorithm), it can help us understand those methods better.

e The key to a good variational approximation is tractable expectations, tractable
entropy, and expressivity.

e It is important to be aware of variational inference’s shortcomings (e.g.,
underestimation of variance in the mean field approximation).

e There are a zillion topics to work on in variational inference. A good place to
start reading is Blei et al. [2017].

Thanks for having me!
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