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Problem statement

We all want to do accurate Bayesian inference quickly:

� In terms of compute (wall time, model evaluations, parallelism)

� In terms of analyst effort (tuning, algorithmic complexity)

Markov Chain Monte Carlo (MCMC) can be straightforward and accurate but slow.

Black Box Variational Inference (BBVI) can be faster alternative to MCMC. But...

� BBVI is cast as an optimization problem with an intractable objective ⇒
� Most BBVI methods use stochastic gradient (SG) optimization ⇒

� SG algorithms can be hard to tune

� Assessing convergence and stochastic error can be difficult

� SG optimization can perform worse than second-order methods on tractable objectives

� Many BBVI methods employ a mean-field (MF) approximation ⇒
� Posterior variances are poorly estimated

Our proposal: replace the intractable BBVI objective with a fixed approximation.

� Better optimization methods can be used (e.g. true second-order methods)

� Convergence and approximation error can be assessed directly

� Can correct posterior covariances with linear response covariances

� This technique is well-studied (but there’s still work to do in the context of BBVI)

⇒ Simpler, faster, and better BBVI posterior approximations ... in some cases.
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Outline

� BBVI Background and our proposal

� Automatic differentiation variational inference (ADVI) (a BBVI method)

� Our approximation: “Deterministic ADVI” (DADVI)

� Linear response (LR) covariances

� Estimating approximation error

� Experimental results: DADVI vs ADVI

� DADVI converges faster than ADVI, and requires no tuning

� DADVI’s posterior mean estimates’ accuracy are comparable to ADVI

� DADVI+LR provides more accurate posterior variance estimates than ADVI

� DADVI provides accurate estimates of its own approximation error

� But stochastic ADVI often results in better objective function values (eventually)

� Theory and shortcomings

� Pessimistic dimension dependence results from optimization theory

� ...which do not apply in certain BBVI settings.

� DADVI fails for expressive BBVI approximations (e.g. full-rank ADVI)

� More work to be done!
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Notation

Data: y

Likelihood: P(y |θ)

Parameter: θ ∈ RDθ

Prior: P(θ) (density w.r.t. Lebesgue RDθ , nonzero everywhere)

We will be interested in means and covariances of the posterior P(θ|y).

’

Example: Election modeling (2016 US POTUS)

Data y : Polling data (colored dots)

Likelihood P(y |θ) : Time series with random effects

Parameter θ : 15, 098-dimensional

Interested in: Vote share on election day

MCMC time: 643 minutes (PyMC3 NUTS)

How can we approximate the posterior more quickly?

One answer: variational inference.
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Variational inference [Blei et al., 2016]

We want the posterior P(θ|y). Let KL (Q(θ)||P(θ)) denote KL divergence:

KL (Q(θ)||P(θ)) = E
Q(θ)

[logQ(θ)]− E
Q(θ)

[logP(θ)] .

The KL divergence is zero if and only if the two distributions are the same.

A tautology: P(θ|y) = argmin
Q

KL (Q(θ)||P(θ|y))

Variational inference:
∗
Q(θ) = argmin

Q∈ΩQ
KL (Q(θ)||P(θ|y)) ... for restricted ΩQ

We hope to choose ΩQ so that

� The optimization problem is tractable

→ simple ΩQ are better

� The best approximation is a good one

→ complex ΩQ are better

The approximation can be poor because

� Poor optimization

� The family ΩQ isn’t expressive enough
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When does variational inference work?

When, in general, is
∗
Q(θ) a good approximation for a given family ΩQ?

It is hard to say.
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Black-box variational inference

To perform VI, we need to solve

∗
Q(θ) = argmin

Q∈ΩQ

 E
Q(θ)

[logQ(θ)]︸ ︷︷ ︸
Entropy of Q

− E
Q(θ)

[logP(θ, y)]︸ ︷︷ ︸
Often intractable

−
Constant︷ ︸︸ ︷
P(y)


︸ ︷︷ ︸

KL(Q(θ)||P(θ))

.

How can we optimize this objective?

Black-box VI [Ranganath et al., 2014]:

� Parameterize the family ΩQ using η ∈ RDη (so we have Q(θ|η))
� We will study ADVI, which takes Q(θ|η) to be Gaussian [Kucukelbir et al., 2017].

� The parameters η are the means and covariance (“mean-field” or “full-rank”)

� Re-write the objective (using the reparameterization trick) as

argmin
η

F (η) where F (η) := E
Nstd(z)

[f (η, z)] .

� Use autodiff to differentiate η 7→ f (η, z)

� Optimize with stochastic optimization using draws zn ∼ Nstd (z).

We propose:

Instead of E
Nstd(z)

[f (η, z)], optimize 1
N

∑N
n=1 f (η, zn) for fixed zn

iid∼ Nstd (z).
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Two approaches

Consider argmin
η

F (η) where F (η) := E
Nstd(z)

[f (η, z)] .

Let ZN = {z1, . . . , zN}
iid∼ Nstd (z), and let F̂ (η|ZN) :=

1
N

∑N
n=1 f (η, zn).

Algorithm 1

Stochastic gradient (SG)

ADVI (and most BBVI)

Fix N (typically N = 1)

t ← 0

while Not converged do

t ← t + 1

Draw ZN

∆S ← ∇η F̂ (ηt−1|ZN)

αt ← SetStepSize(Past state)

ηt ← ηt−1 − αt∆S

AssessConvergence(Past state)

end while

return ηt or 1
M

∑t
t′=t−M ηt′

Algorithm 2

Sample average approximation (SAA)

Deterministic ADVI (DADVI) (proposal)

Fix N (our experiments use N = 30)

Draw ZN

t ← 0

while Not converged do

t ← t + 1

∆D ← GetStep(F̂ (·|ZN), ηt−1)

ηt ← ηt−1 +∆D

AssessConvergence(F̂ (·|ZN), ηt)

end while

return ηt

Our proposal: Apply Algorithm 2 with the ADVI objective.

Take better steps, easily assess convergence, with less tuning.
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Experiments

For each of a range of models (next slide), we compared:

� NUTS: The “no-U-turn” MCMC sampler as implemented by PyMC [Salvatier

et al., 2016]. We used this as the “ground truth” posterior.

� DADVI: We used N = 30 draws for DADVI for each model. We optimized using

an off-the-shelf second-order Newton trust region method (trust-ncg in

scipy.optimize.minimize) with no tuning or preconditioning.

Stochastic ADVI methods:

� Mean field ADVI: We used the PyMC implementation of ADVI, together with its

default termination criterion (based on parameter differences).

� Full-rank ADVI: We used the PyMC implementation of full-rank ADVI, together

with the default termination criterion for ADVI described above.

� RAABBVI: To run RAABBVI, we used the public package viabel, provided by

Welandawe et al. [2022].

We terminated unconverged stochastic ADVI after 100,000 iterations.
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Experiments

We evaluated each method on a range of models.

Model Name Dim Dθ NUTS runtime Description

ARM

(53 models)

Median 5

(max 176)

median 39 seconds

(max 16 minutes)

A range of linear models,

GLMs, and GLMMs

Microcredit 124 597 minutes Hierarchical model with

heavy tails and zero

inflation

Occupancy 1, 884 251 minutes Binary regression with

highly crossed random

effects

Tennis 5, 014 57 minutes Binary regression with

highly crossed random

effects

POTUS 15, 098 643 minutes Autoregressive time series

with random effects

Table 1: Model summaries.
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Comparisons

To form a common scale for the accuracy of the posteriors, we report:

εµMETHOD :=
µMETHOD − µNUTS

σNUTS

εσMETHOD :=
σMETHOD − σNUTS

σNUTS

.

where

µMETHOD := METHOD posterior mean σMETHOD := METHOD posterior SD.

We measure computational cost using both

� Wall time and

� Number of model evaluations (gradients, Hessian-vector products).

We compare achieved objective values using a large number of independent samples.

We report objective values and computation cost relative to DADVI.
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Posterior mean accuracy

Figure 1: Posterior mean accuracy (relative to MCMC posterior standard deviation). Each point is

a single named parameter in a single model. Points above the diagonal line indicate better DADVI

or LRVB performance. 12



Computational cost for ARM models

Figure 2: Runtimes and model evaluation counts for the ARM models. Results are reported

divided by the corresponding value for DADVI.
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Computational cost for non-ARM models

Figure 3: Runtimes and model evaluation counts for the non-ARM models. Results are reported

divided by the corresponding value for DADVI. Missing model / method combinations are marked

with an X.
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Optimization traces for ARM models

Figure 4: Optimization traces for the ARM models. Black dots show the termination point of each

method. Dots above the horizontal black line mean that DADVI found a better ELBO. Dots to the

right of the black line mean that DADVI terminated sooner in terms of model evaluations. 15



Optimization traces for non-ARM models

Figure 5: Traces for non-ARM models. Black dots show the termination point of each method.

Dots above the horizontal black line mean that DADVI found a better ELBO. Dots to the right of

the black line mean that DADVI terminated sooner in terms of model evaluations. 16



Experiment summary

⇒ DADVI is faster, simpler, and the posterior means are not worse.

But DADVI can additionally provide:

� Simple estimates of approximation error

� Improved (LR) posterior covariance esimates

17



Linear response covariances and sampling uncertainty

Intractable objective:
∗
η = argmin

η∈RDη

E
Nstd(z)

[f (η, z)]

DADVI approximation:

η̂(ZN) = argmin
η∈RDη

1

N

N∑
n=1

f (η, zn).

What is the error of the DADVI approximation η̂ − ∗
η?

⇔ What is the distribution of the DADVI error η̂ − ∗
η under sampling of ZN?

Answer: The same as a that of any M-estimator: asymptotically normal (as N grows)

Posterior variances are often badly estimated by mean-field (MF) approximations.

Linear response (LR) covariances improve covariance estimates by computing

sensitivity of the variational means to particular perturbations. [Giordano et al., 2018]

Example: With a correlated Gaussian P(θ|y), the ADVI means are exactly correct,

the ADVI variances are underestimated, and LR covariances are exactly correct.

Both DADVI error and LR covariances can be computed from the DADVI objective.

Stochastic ADVI does not produce an actual optimum of any tractable objective, so

LR and M-estimator computations are unavailable.
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∗
η = argmin

η∈RDη

E
Nstd(z)

[f (η, z)]

DADVI approximation:

η̂(ZN) = argmin
η∈RDη

1

N

N∑
n=1

f (η, zn).

What is the error of the DADVI approximation η̂ − ∗
η?

⇔ What is the distribution of the DADVI error η̂ − ∗
η under sampling of ZN?

Answer: The same as a that of any M-estimator: asymptotically normal (as N grows)

Posterior variances are often badly estimated by mean-field (MF) approximations.

Linear response (LR) covariances improve covariance estimates by computing

sensitivity of the variational means to particular perturbations. [Giordano et al., 2018]

Example: With a correlated Gaussian P(θ|y), the ADVI means are exactly correct,

the ADVI variances are underestimated, and LR covariances are exactly correct.

Both DADVI error and LR covariances can be computed from the DADVI objective.

Stochastic ADVI does not produce an actual optimum of any tractable objective, so

LR and M-estimator computations are unavailable.
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Posterior standard deviation accuracy

Figure 6: Posterior sd relative accuracy. Each point is a single named parameter in a single model.

Points above the diagonal line indicate better DADVI or LRVB performance.
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DADVI approximation error accuracy

Figure 7: Density estimates of Φ(εξ) for difference models. All the ARM models are grouped

together for ease of visualization. Each panel shows a binned estimate of the density of Φ(εξ) for

a particular model and number of draws N. Values close to one (a uniform density) indicate good

frequentist performance. CG failed for the Occupancy and POTUS models with only 8 draws,

possibly indicating poor optimization performance with so few samples.
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Previous theoretical results

Intractable objective:
∗
η = argmin

η∈RDη

E
Nstd(z)

[f (η, z)]

SAA approximation (DADVI):

η̂(ZN) = argmin
η∈RDη

1

N

N∑
n=1

f (η, zn).

The idea of optimizing F̂ instead of SG on F is old and well-studied in the optimization

literature, where F̂ is known as the Sample average approximation (SAA).

Yet SAA is rarely used for BBVI.1 One possible reason is the following:

Theorem [Nemirovski et al., 2009]: In general, the error of both SG and SAA scale

as
√

Dθ/N, where, for SG, N is the total number of samples used.

� For SG, each zn gets used once (for a single gradient step)

� For SAA, each zn gets used once per optimization step (of which the are many).

� Often, in higher dimensions, SAA requires more optimization steps.

Corollary: [Kim et al., 2015] In general, for a given accuracy, the computation

required for SAA scales worse than SG as the dimension Dθ grows.

But we got good results with Dθ as high as 15, 098 using only only N = 30. Why?

1Some exceptions I’m aware of: Giordano et al. [2018, 2022], Wycoff et al. [2022], Burroni et al. [2023].
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Some first steps

Theorem [Giordano et al., 2023]: When P(θ|y) is multivariate normal, and we use

the mean-field Gaussian approximation, then, for any particular entry ηd of η, then∣∣η̂d − ∗
ηd
∣∣ = Op(N−1/2) irrespective of Dθ.

Theorem [Giordano et al., 2023]: Assume P(θ|y) has a “global-local” structure:

θ = (γ, λ1, . . . , λDλ
) P(γ, λ1, . . . , λDλ

|y) =
Dλ∏
d=1

P(γ, λd |y).

Assume that the dimension of γ and each λd stays fixed as Dλ grows.

Under regularity conditions, the DADVI error scales as
√

logDλ/N, not
√

Dλ/N.

Proposal: The “in general” analysis of [Nemirovski et al., 2009] is too general for

many practically interesting BBVI problems.
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A negative result for expressive approximations

Theorem [Giordano et al., 2023]: Assume that N < Dθ, and that we use a full-rank

Gaussian approximation. Then the DADVI objective is unbounded below, and

optimization of the DADVI objective will approach a degenerate point mass at

argmaxθ logP(θ|y).

Proof sketch: For any value of the variational mean, the DADVI objective only

depends on P(θ|y) evaluated in a subspace spanned by ZN . The variational objective

can be driven to −∞ by driving the variance to zero in the subspace orthogonal to ZN .

Proposal: All sufficiently expressive variational approximations (e.g. normalizing

flows) will fail in the same way in high dimensions. However, this pathology can be

obscured and overlooked in practice by low-quality optimization.
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Conclusion

Black Box Variational Inference with a Deterministic Objective: Faster, More

Accurate, and Even More Black Box.

Giordano, R.∗, Ingram, M.∗, Broderick, T. (∗ joint first authors), JMLR, 2024.

(Arxiv version here.)

� By fixing the randomness in the ADVI objective, DADVI provides BBVI that is

easier to use, faster, and more accurate than stochastic gradient.

� The approximation used by DADVI will not work in high dimensions for

sufficiently expressive approximating distributions (e.g., full-rank ADVI).

� There appears to be a gap between the optimization literature and BBVI practice

in high dimensions for a class of practically interesting problems.
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Linear response covariances

Posterior variances are often badly estimated by mean-field (MF) approximations.

Example: With a correlated Gaussian P(θ|y) with ADVI, the ADVI means are

correct, but the ADVI variances are underestimated.

Take a variational approximation
∗
η := argmin

η∈RDη KLVI (η). Often,

E
Q(θ|∗η)

[θ] ≈ E
P(θ|y)

[θ] but Var
Q(θ|∗η)

(θ) ̸= Var
P(θ|y)

(θ) . (1)

Example: Correlated Gaussian P(θ|y) with ADVI.

Linear response covariances use the fact that, if P(θ|y , t) ∝ P(θ|y) exp(tθ), then
d E
P(θ|y,t)

[θ]

dt

∣∣∣∣∣∣
t=0

= Cov
P(θ|y)

(θ) . (2)

Let
∗
η(t) be the variational approximation to P(θ|y , t), and take

LRCov
Q(θ|∗η)

(θ) =

d E
Q(θ|∗η(t))

[θ]

dt

∣∣∣∣∣∣∣
t=0

=

(
∇η E

Q(θ|∗η)
[θ]

)(
∇2

η KLVI

(∗
η
) )−1

(
∇η E

Q(θ|∗η)
[θ]

)

Example: For ADVI with a correlated Gaussian P(θ|y), LRCov
Q(θ|∗η)

(θ) = Cov
Q(θ|∗η)

(θ).
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