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Problem statement

We all want to do accurate Bayesian inference quickly:

e In terms of compute (wall time, model evaluations, parallelism)
e In terms of analyst effort (tuning, algorithmic complexity)

Markov Chain Monte Carlo (MCMC) can be straightforward and accurate but slow.
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e Most BBVI methods use stochastic gradient (SG) optimization =

e SG algorithms can be hard to tune

e Assessing convergence and stochastic error can be difficult

e SG optimization can perform worse than second-order methods on tractable objectives
e Many BBVI methods employ a mean-field (MF) approximation =

e Posterior variances are poorly estimated
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e BBVI is cast as an optimization problem with an intractable objective =
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e SG algorithms can be hard to tune

e Assessing convergence and stochastic error can be difficult

e SG optimization can perform worse than second-order methods on tractable objectives
e Many BBVI methods employ a mean-field (MF) approximation =

e Posterior variances are poorly estimated

Our proposal: replace the intractable BBVI objective with a fixed approximation.

e Better optimization methods can be used (e.g. true second-order methods)

e Convergence and approximation error can be assessed directly

e Can correct posterior covariances with linear response covariances

e This technique is well-studied (but there's still work to do in the context of BBVI)

= Simpler, faster, and better BBVI posterior approximations ... in some cases. 2



e BBVI Background and our proposal
e Automatic differentiation variational inference (ADVI) (a BBVI method)
e Our approximation: “Deterministic ADVI” (DADVI)
e Linear response (LR) covariances
e Estimating approximation error

e Experimental results: DADVI vs ADVI

e DADVI converges faster than ADVI, and requires no tuning

e DADVI's posterior mean estimates’ accuracy are comparable to ADVI

e DADVI+LR provides more accurate posterior variance estimates than ADVI

e DADVI provides accurate estimates of its own approximation error

e But stochastic ADVI often results in better objective function values (eventually)

e Theory and shortcomings
Pessimistic dimension dependence results from optimization theory
...which do not apply in certain BBVI settings.

[ ]
[ ]
e DADVI fails for expressive BBVI approximations (e.g. full-rank ADVI)
e More work to be done!



Data: y
Likelihood:  P(y|6)
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Prior:  P(6) (density w.r.t. Lebesgue R?, nonzero everywhere)

We will be interested in means and covariances of the posterior P(6|y).
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Prior:  P(6) (density w.r.t. Lebesgue R?, nonzero everywhere)

We will be interested in means and covariances of the posterior P(6|y).

Economist presidential election model (2016 data)

o] - Example: Election modeling (2016 US POTUS)

Data y : Polling data (colored dots)
E g e - CoA Likelihood P(y|6) : Time series with random effects
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Parameter 6 :  15,098-dimensional

Interested in:  Vote share on election day

MCMC time: 643 minutes (PyMC3 NUTS)

Democratic share of

How can we approximate the posterior more quickly?
One answer: variational inference.
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Variational inference [Blei et al., 2016]

We want the posterior P(0]y). Let KL (Q(0)||P(#)) denote KL divergence:

KL (Q(0)[IP(9)) = a0 [log Q(0)] — a0 [log P(0)] -

The KL divergence is zero if and only if the two distributions are the same.
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We hope to choose Qg so that

e The optimization problem is tractable
— simple Qg are better
e The best approximation is a good one

— complex Qg are better

The approximation can be poor because

All distributions o Poor optimization

e The family Qg isn't expressive enough



When does variational inference work?

*

When, in general, is Q(0) a good approximation for a given family Qo?

It is hard to say.



Black-box variational inference

To perform VI, we need to solve

Constant
*

Q(0) = aégerélign Q%) [log Q(6)] — QJ%)) [log P(0,y)] — P(y)

Entropy of Q Often intractable

KL(Q(0)[IP(0))

How can we optimize this objective?
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e Use autodiff to differentiate n +— f(n, z)
e Optimize with stochastic optimization using draws z, ~ Ngq (2).
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e The parameters 7 are the means and covariance (“mean-field” or “full-rank™)
e Re-write the objective (using the reparameterization trick) as

argmin F(n) where F(n):= E [f(n,z)].
n Nsta(2)

e Use autodiff to differentiate n +— f(n, z)
e Optimize with stochastic optimization using draws z, ~ Ngq (2).

We propose:
Instead of E [f(n, z)], optimize % Z,’:’Zl f(n, zn) for fixed z, = std (2).
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Our proposal: Apply Algorithm 2 with the ADVI objective.
Take better steps, easily assess convergence, with less tuning.



For each of a range of models (next slide), we compared:

e NUTS: The “no-U-turn” MCMC sampler as implemented by PyMC [Salvatier
et al., 2016]. We used this as the “ground truth” posterior.
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For each of a range of models (next slide), we compared:

e NUTS: The “no-U-turn” MCMC sampler as implemented by PyMC [Salvatier
et al., 2016]. We used this as the “ground truth” posterior.

e DADVI: We used N = 30 draws for DADVI for each model. We optimized using
an off-the-shelf second-order Newton trust region method (trust-ncg in
scipy.optimize.minimize) with no tuning or preconditioning.

Stochastic ADVI methods:
e Mean field ADVI: We used the PyMC implementation of ADVI, together with its

default termination criterion (based on parameter differences).
e Full-rank ADVI: We used the PyMC implementation of full-rank ADVI, together

with the default termination criterion for ADVI described above.

e RAABBVI: To run RAABBVI, we used the public package viabel, provided by
Welandawe et al. [2022].

We terminated unconverged stochastic ADVI after 100,000 iterations.



We evaluated each method on a range of models.

‘ Model Name ‘ Dim Dy ‘ NUTS runtime ‘ Description
ARM Median 5 median 39 seconds A range of linear models,
(53 models) (max 176) (max 16 minutes) GLMs, and GLMMs
Microcredit 124 597 minutes Hierarchical model with
heavy tails and zero
inflation
Occupancy 1,884 251 minutes Binary regression with
highly crossed random
effects
Tennis 5,014 57 minutes Binary regression with
highly crossed random
effects
POTUS 15,098 643 minutes Autoregressive time series
with random effects

Table 1: Model summaries.



Comparisons

To form a common scale for the accuracy of the posteriors, we report:

o ._ MMETHOD — UNUTS
EMETHOD *—

o .
EMETHOD ‘=
ONUTS ONUTS

OMETHOD — ONUTS

where

UMETHOD = METHOD posterior mean OMETHOD := METHOD posterior SD.



Comparisons

To form a common scale for the accuracy of the posteriors, we report:

o ._ MMETHOD — UNUTS
EMETHOD *—

o .
EMETHOD ‘=
ONUTS ONUTS

OMETHOD — ONUTS

where

UMETHOD = METHOD posterior mean OMETHOD := METHOD posterior SD.

We measure computational cost using both

e Wall time and

e Number of model evaluations (gradients, Hessian-vector products).

We compare achieved objective values using a large number of independent samples.

We report objective values and computation cost relative to DADVI.



Posterior mean accuracy
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Figure 1: Posterior mean accuracy (relative to MCMC posterior standard deviation). Each point is
a single named parameter in a single model. Points above the diagonal line indicate better DADVI
or LRVB performance.



Computational cost for ARM models

0 p11L1l

5 64
_I_"_ Inference method
04

[ nurts (ewmo)
154 [ Rransevi
B wean field ADVI

1 (1]
0 Full rank ADVI
o I- B Forran

count
count
IS

o . 1 1
1 10 100 1 10 100
Runtime / DADVI runtime Model evals / DADVI model evals
(log10 scale) (log10 scale)

Figure 2: Runtimes and model evaluation counts for the ARM models. Results are reported
divided by the corresponding value for DADVI.




Computational cost for non-ARM models
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Figure 3: Runtimes and model evaluation counts for the non-ARM models. Results are reported
divided by the corresponding value for DADVI. Missing model / method combinations are marked
with an X.



Optimization traces for ARM models

Standardized optimization traces for ARM
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Figure 4: Optimization traces for the ARM models. Black dots show the termination point of each
method. Dots above the horizontal black line mean that DADVI found a better ELBO. Dots to the
right of the black line mean that DADVI terminated sooner in terms of model evaluations.



Optimization traces for non-ARM models

Standardized optimization traces for non-ARM
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Experiment summary

= DADVI is faster, simpler, and the posterior means are not worse.

But DADVI can additionally provide:

e Simple estimates of approximation error

e Improved (LR) posterior covariance esimates



Linear response covariances and sampling uncertainty

Intractable objective: DADVI approximation:
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What is the error of the DADVI approximation 7 — 7?7
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Posterior variances are often badly estimated by mean-field (MF) approximations.

Linear response (LR) covariances improve covariance estimates by computing
sensitivity of the variational means to particular perturbations. [Giordano et al., 2018]

Example: With a correlated Gaussian P(6|y), the ADVI means are exactly correct,
the ADVI variances are underestimated, and LR covariances are exactly correct.



Linear response covariances and sampling uncertainty

Intractable objective: DADVI approximation:
ij= argmin_E_[f(n,2)] PN

enbn Nora(? #(Zn) = argmin = 3" (7, z0).
nerPn n=1

What is the error of the DADVI approximation 7 — 7?7
< What is the distribution of the DADVI error 7j — 7 under sampling of Zy?

Answer: The same as a that of any M-estimator: asymptotically normal (as N grows)

Posterior variances are often badly estimated by mean-field (MF) approximations.

Linear response (LR) covariances improve covariance estimates by computing
sensitivity of the variational means to particular perturbations. [Giordano et al., 2018]

Example: With a correlated Gaussian P(6|y), the ADVI means are exactly correct,
the ADVI variances are underestimated, and LR covariances are exactly correct.

Both DADVI error and LR covariances can be computed from the DADVI objective.

Stochastic ADVI does not produce an actual optimum of any tractable objective, so
LR and M-estimator computations are unavailable.



Posterior standard deviation accuracy
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Figure 6: Posterior sd relative accuracy. Each point is a single named parameter in a single model.
Points above the diagonal line indicate better DADVI or LRVB performance.



DADVI approximation error accuracy
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Figure 7: Density estimates of ¢(55) for difference models. All the ARM models are grouped
together for ease of visualization. Each panel shows a binned estimate of the density of (&) for
a particular model and number of draws N. Values close to one (a uniform density) indicate good
frequentist performance. CG failed for the Occupancy and POTUS models with only 8 draws,

possibly indicating poor optimization performance with so few samples. 20



Previous theoretical results

Intractable objective: SAA approximation (DADVI):
7= argmin E [f(n,2)] 1N
nerPn Nswd(2) A(Zy) = argmin — E f(n, zn)-
b, N
n€eER™M n=1

The idea of optimizing F instead of SG on F is old and well-studied in the optimization
literature, where F is known as the Sample average approximation (SAA).

Yet SAA is rarely used for BBVI.l One possible reason is the following:

Theorem [Nemirovski et al., 2009]: In general, the error of both SG and SAA scale
as /Dy /N, where, for SG, N is the total number of samples used.

1Some exceptions I'm aware of: Giordano et al. [2018, 2022], Wycoff et al. [2022], Burroni et al. [2023].
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as \/T/N where, for SG, N is the total number of samples used.
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e For SAA, each z, gets used once per optimization step (of which the are many).
e Often, in higher dimensions, SAA requires more optimization steps.

Corollary: [Kim et al., 2015] In general, for a given accuracy, the computation
required for SAA scales worse than SG as the dimension Dy grows.
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The idea of optimizing F instead of SG on F is old and well-studied in the optimization
literature, where F is known as the Sample average approximation (SAA).

Yet SAA is rarely used for BBVI.l One possible reason is the following:
Theorem [Nemirovski et al., 2009]: In general, the error of both SG and SAA scale
as /Dy /N, where, for SG, N is the total number of samples used.

e For SG, each z, gets used once (for a single gradient step)

e For SAA, each z, gets used once per optimization step (of which the are many).

e Often, in higher dimensions, SAA requires more optimization steps.

Corollary: [Kim et al., 2015] In general, for a given accuracy, the computation
required for SAA scales worse than SG as the dimension Dy grows.

But we got good results with Dy as high as 15,098 using only only N = 30. Why?

1Some exceptions I'm aware of: Giordano et al. [2018, 2022], Wycoff et al. [2022], Burroni et al. [2023].
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Some first steps

Theorem [Giordano et al., 2023]: When P(6|y) is multivariate normal, and we use
the mean-field Gaussian approximation, then, for any particular entry ny of 1, then
|77d — 77d| Op(N— 1/2) irrespective of Dy.

22



Some first steps

Theorem [Giordano et al., 2023]: When P(6|y) is multivariate normal, and we use
the mean-field Gaussian approximation, then, for any particular entry ny of 1, then
|77d — 77d| Op(N— 1/2) irrespective of Dy.

Theorem [Giordano et al., 2023]: Assume P(6f|y) has a “global-local” structure:

A
0= (v,A1,---,Apy) P, 21,5 A0y y) = [ PO Adly)
d=1

Assume that the dimension of v and each A\, stays fixed as D) grows.

Under regularity conditions, the DADVI error scales as y/log Dy /N, not /Dy /N.
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the mean-field Gaussian approximation, then, for any particular entry ny of 1, then
|77d — 77d| Op(N— 1/2) irrespective of Dy.

Theorem [Giordano et al., 2023]: Assume P(6f|y) has a “global-local” structure:

A
0= (v,A1,---,Apy) P, 21,5 A0y y) = [ PO Adly)
d=1

Assume that the dimension of v and each A\, stays fixed as D) grows.

Under regularity conditions, the DADVI error scales as y/log Dy /N, not /Dy /N.

Proposal: The “in general” analysis of [Nemirovski et al., 2009] is too general for
many practically interesting BBVI problems.
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A negative result for expressive approximations

Theorem [Giordano et al., 2023]: Assume that N < Dy, and that we use a full-rank
Gaussian approximation. Then the DADVI objective is unbounded below, and
optimization of the DADVI objective will approach a degenerate point mass at
argmaxg log P(0]y).
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A negative result for expressive approximations

Theorem [Giordano et al., 2023]: Assume that N < Dy, and that we use a full-rank
Gaussian approximation. Then the DADVI objective is unbounded below, and
optimization of the DADVI objective will approach a degenerate point mass at
argmaxg log P(0]y).

Proof sketch: For any value of the variational mean, the DADVI objective only
depends on P(f|y) evaluated in a subspace spanned by Zy. The variational objective
can be driven to —oco by driving the variance to zero in the subspace orthogonal to Zy,.
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A negative result for expressive approximations

Theorem [Giordano et al., 2023]: Assume that N < Dy, and that we use a full-rank
Gaussian approximation. Then the DADVI objective is unbounded below, and
optimization of the DADVI objective will approach a degenerate point mass at
argmaxg log P(0]y).

Proof sketch: For any value of the variational mean, the DADVI objective only
depends on P(f|y) evaluated in a subspace spanned by Zy. The variational objective
can be driven to —oco by driving the variance to zero in the subspace orthogonal to Zy,.

Proposal: All sufficiently expressive variational approximations (e.g. normalizing
flows) will fail in the same way in high dimensions. However, this pathology can be
obscured and overlooked in practice by low-quality optimization.
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Conclusion

Black Box Variational Inference with a Deterministic Objective: Faster, More
Accurate, and Even More Black Box.

Giordano, R.*, Ingram, M.*, Broderick, T. (* joint first authors), JMLR, 2024.

(Arxiv version here.)

e By fixing the randomness in the ADVI objective, DADVI provides BBVI that is
easier to use, faster, and more accurate than stochastic gradient.

e The approximation used by DADVI will not work in high dimensions for
sufficiently expressive approximating distributions (e.g., full-rank ADVI).

e There appears to be a gap between the optimization literature and BBVI practice
in high dimensions for a class of practically interesting problems.
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Supplemental material
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Linear response covariances

Posterior variances are often badly estimated by mean-field (MF) approximations.
Example: With a correlated Gaussian P(0|y) with ADVI, the ADVI means are

correct, but the ADVI variances are underestimated.

Take a variational approximation 7 := argmin KLyt (). Often,

neRPn
E [~ E [6] but Var (0)# Var 9). (1)
Q(6]7) P(6ly) Q(017) P(6ly)
Example: Correlated Gaussian P(60|y) with ADVI.

Linear response covariances use the fact that, if P(0|y, t) o< P(0|y)exp(td), then

dP((}E\Ey t) g
R S — 0 2
dt C(g‘\}// - &)
t=0

Let 7)(t) be the variational approximation to P(6|y, t), and take
d E [6]
Q(0ln(1)) oy y—1
LRCov (f) = ——>—| = (vn E_[0] ) (V2 KLv1 (7)) <vn 0]
Q(017%) dt Q(017) Q(017)
t=0

Example: For ADVI with a correlated Gaussian P(0|y), LRCov (0) = Cov (0).

Q(017) Q(01n)
27



