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Economist 2016 Election Model [Gelman and Heidemanns, 2020]

A time series model to predict the 2016 US presidential

election outcome from polling data.

Model:

• X = x1, . . . , xN = Polling data (N = 361).

• θ = Lots of random effects (day, pollster, etc.)

• f(θ) = Democratic % of vote on election day

Typically, we compute Markov chain Monte Carlo

(MCMC) draws from the posterior p(θ|X).

We want to know E
p(θ|X)

[f(θ)].

The people who responded to the polls were randomly selected.

If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

Problem: Each MCMC run takes about 10 hours (Stan, six cores).
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Results

Proposal: Use full–data posterior draws to form a linear approximation to data reweightings.

Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: Seconds
(But note the approximation has some error)
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Outline

• Data reweighting

• Write the change in the posterior expectation as linear component+ error

• The linear component can be computed from a single run of MCMC

• Finite-dimensional problems with posteriors which concentrate asymptotically

• AsN → ∞, the linear component provides an arbitrarily good approximation

• Consistent variance estimates (the errors vanish in aggregate)

• High-dimensional problems

• The linear component is the same order as the error

• Even for parameters which concentrate a posteriori, even asN → ∞
• Argue that the variance estimates are inconsistent, but maybe not too bad in practice

• Some implications and future work
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Data re-weighting.

Augment the problem with data weights w1, . . . , wN . We can write E
p(θ|X;w)

[f(θ)].

`n(θ) := log p(xn|θ) log p(X|θ;w) =
N∑

n=1

wn`n(θ)

Original weights:

Leave-one-out weights:

Bootstrap weights:

E
p(θ|X)

[f(θ)]

E
p(θ|X;wn)

[f(θ)]

Slope= ψn

Error= En(wn)

The re-scaled slopeNψn is known as the “influence function” at data point xn.

E
p(θ|X;w)

[f(θ)]− E
p(θ|X)

[f(θ)] =
N∑

n=1

ψn(wn − 1) + En(w)
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Data re-weighting.

How can we use the approximation?

Assume the slope is computable and error is small.

E
p(θ|X;w)

[f(θ)]− E
p(θ|X)

[f(θ)] =
N∑

n=1

ψn(wn − 1) + En(w)

Bootstrap. Draw bootstrap weights w ∼ p(w) = Multinomial(N,N−1).

Bootstrap variance = Var
p(w)

(
E

p(θ|X;w)
[f(θ)]

)

= Var
p(w)

(
N∑

n=1

ψn(wn − 1) + En(w)
)

=
1

N2

N∑
n=1

(
ψn − ψ

)2
+ Term involving En(w) for n = 1, . . . , N

≈
1

N

(
1

N

N∑
n=1

(
ψn − ψ

)2)
︸ ︷︷ ︸

“Infinitesimal jackknife variance estimate”
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Expressions for the slope and error

How to compute the slopes ψn? How large is the error E(w)?

For simplicity, let us consider a single weight for the moment.

E
p(θ|X;wn)

[f(θ)]− E
p(θ|X)

[f(θ)] = ψn(wn − 1) + En(w)

Let an overbar denote “posterior–mean zero.” For example, f̄(θ) := f(θ)− E
p(θ|X)

[f(θ)].

By dominated convergence and the mean value theorem, for some w̃n ∈ [0, wn]:

ψn = E
p(θ|X)

[
f̄(θ)¯̀n(θ)

]
︸ ︷︷ ︸
Estimatable with MCMC!

= Op(N
−1) under posterior concentration

En(w) =
1

2
E

p(θ|X;w̃n)

[
f̄(θ)¯̀n(θ)¯̀n(θ)

]
︸ ︷︷ ︸
Cannot compute directly (don’t know w̃)

= Op(N
−2) under posterior concentration

(wn − 1)2

The scaling Op(N−2) for the error is classical for a particular weight [Kass et al., 1990].

For variance estimation, we need (and prove) conditions under which the Op(N−2) scaling

applies sufficiently uniformly in all the weights.
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Variance consistency theorem

How do the results for a single weight translate into variance estimates?

Var
p(w)

(
E

p(θ|X,w)
[f(θ)]

)
=

1

N2

N∑
n=1

(
ψn − ψ

)2
+ Term involving En(w) for n = 1, . . . , N

• Assume (sketch): A well–behaved MAPmaximum a posteriori estimator θ̂ exists.
• The dimension of θ is fixed asN → ∞
• The expected log likelihood has a strict maximum at θ∞
• The observed log likelihood statisfies θ̂ → θ∞
• The expected log likelihood Hessian is negative definite at θ∞

• Assume (sketch): We can apply standard asymptotics.

• The log prior and log likelihood are four times continuously differentiable

• The prior is proper, and a technical set of prior expectations are finite

• The log likelihood and its derivatives are dominated by a square–integrable envelope function for

all θ in a neighborhood of θ∞.

Theorem 2 [Giordano and Broderick, 2023]: Under the above assumptions,

√
N

(
E

p(θ|X)
[g(θ)]− g(θ∞)

)
dist−−−−→

N→∞
N (0, V g) [Kleijn and Van der Vaart, 2012]

and V IJ :=
1

N

N∑
n=1

(
ψn − ψ

)2 prob−−−−→
N→∞

V g . (Our contribution)
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Negative binomial experiment

Example: Negative binomial models with an unknown parameter γ.

For n = 1, . . . , N let xn|γ
iid∼ NegativeBinomial (r, γ) for fixed r.

Write log p(X|γ,w) =
N∑

n=1

wn`n(γ).
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Data Analysis Using Regression and Multilevel/Hierarchical Models.

We ran rstanarm on 56 different models

on 13 different datasets from Gelman and

Hill [2006], including Gaussian and lo-

gistic regression, fixed and mixed-effects

models.

Across all models, we estimate 799 dis-

tinct covariances (regression coefficients

and log scale parameters).

Using the bootstrap as ground truth, com-

pute the relative errors:

VBayes − VBoot

|VBoot|
and

VIJ − VBoot

|VBoot|
.

Figure 1: The distribution of the relative errors.

Log scale parameters include all variances or

covariances that involve at least one log scale

parameters.

Total compute time for all models:

Initial fit: 1.6 hours

Bootstrap: 381.5 hours

Linear approximation: A few minutes

9



How to connect to the election data?

Problem: MCMC is only interesting when the posterior doesn’t concentrate.

10



High dimensional problems

Example: Exponential families with random effects (REs) λ and fixed effects γ.

If the observations per random effect remains bounded asN → ∞, then

• Parameter λ (“local”) grows in dimension withN .

• Parameter γ (“global”) is finite-dimensional.

• Marginally p(λ|X) does not concentrate.

• Marginally, p(γ|X) concentrates.

In general, we cannot hope for an asymptotic analysis of E
p(λ,γ|X)

[f(λ)].

Can we save the approximation when some parameters concentrate?

Does the residual vanish asymptotically for wn 7→ E
p(γ|X;wn)

[f(γ)]?

11



High dimensional problems

Example: Exponential families with random effects (REs) λ and fixed effects γ.

If the observations per random effect remains bounded asN → ∞, then

• Parameter λ (“local”) grows in dimension withN .

• Parameter γ (“global”) is finite-dimensional.

• Marginally p(λ|X) does not concentrate.

• Marginally, p(γ|X) concentrates.

In general, we cannot hope for an asymptotic analysis of E
p(λ,γ|X)

[f(λ)].

Can we save the approximation when some parameters concentrate?

Does the residual vanish asymptotically for wn 7→ E
p(γ|X;wn)

[f(γ)]?

11



High dimensional problems

We assume that p(γ|X) concentrates but p(λ|X) does not. By our series expansion:

E
p(γ,λ|X;wn)

[γ]− E
p(γ,λ|X)

[γ] =

ψn(wn − 1) + En(w)

= E
p(γ,λ|X)

[
γ̄ ¯̀n(γ, λ)

]
(wn − 1) +

1

2
E

p(γ,λ|X;w̃n)

[
γ̄ ¯̀n(γ, λ)

2
]
(wn − 1)2

= E
p(γ|X)

[
γ̄ E

p(λ|γ,X)

[
¯̀
n(γ, λ)

]
︸ ︷︷ ︸

F1(γ)

]
(wn − 1) +

1

2
E

p(γ|X;w̃n)

[
γ̄ E

p(λ|X,γ;w̃n)

[
¯̀
n(γ, λ)

2
]

︸ ︷︷ ︸
F2(γ)

]
(wn − 1)2

= E
p(γ|X)

[γ̄F1(γ)]︸ ︷︷ ︸
Op(N

−1)
(by p(γ|X) concentration)

(wn − 1) +
1

2
E

p(γ|X;w̃n)
[γ̄F2(γ)]︸ ︷︷ ︸

Op(N
−1)

(by p(γ|X) concentration)

(wn − 1)2

⇒ ψn = Op(N
−1) En(w) = Op(N

−1)

Corollary [Giordano and Broderick, 2023]:

In general, wn 7→ N

(
E

p(γ|X;wn)
[γ]− E

p(γ|X)
[γ]

)
remains non-linear asN → ∞.
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Bayesian von–Mises Expansion

How can we apply the single–weight result to variance computations?

Define the “generalized posterior” functional (θ may be growing in dimension):

T (G, N) :=

∫
g(θ) exp

(
N
∫
`(x0|θ)G(dx0)

)
π(θ)dθ∫

exp
(
N
∫
`(x0|θ)G(dx0)

)
π(θ)dθ

.

Let FN denote the empirical distribution over xn. Then

E
p(θ|X)

[g(θ)] =

∫
g(θ) exp

(
N 1

N

∑N
n=1 `(xn|θ)

)
π(θ)dθ∫

exp
(
N 1

N

∑N
n=1 `(xn|θ)

)
π(θ)dθ

= T (FN , N).

Let F denote the true distribution of xn, and let Ft
N = tFN + (1− t)F.

We can study the von Mises expansion:

√
N

(
E

p(θ|X)
[g(θ)]− T (F, N)

)
=

√
N

∂T (Ft
N , N)

∂t

∣∣∣∣
t=0

(FN − F) +E(t̃)

=
√
N

N∑
n=1

(ψn − ψ)︸ ︷︷ ︸
Infinitesimal jackknife estimator

+op(1) +E(t̃).

Inconsistency is suggested if E(t̃) fails to vanish.
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Bayesian von–Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):

(Consistency of the von–Mises expansion in finite dimensions)

Under slightly stronger conditions our original finite–dimensional posterior consistency result,

sup
t̃∈[0,1]

|E(t̃)| → 0 in the Bayesian von–Mises expansion.

Theorem 4 [Giordano and Broderick, 2023] (sketch, not yet on arxiv):

(Inconsistency of the von–Mises expansion in high dimensional exponential families)

Assume that xn comes with a equiprobable group assignment gn ∈ 1, . . . , G.

Conditional on g, xn is modeled as a finite-dimensional exponential family given λ, γ:

log p(xn|gn = g, γ, λ) = τ(xn)
ᵀηg(γ, λ) + Constant.

Define the average product of second moments:

VN (γ) :=
1

G

G∑
g=1

tr

(
E

F(xn)
[τ(xn)τ(xn)

ᵀ] Cov
p(λ|γ,F)

(ηg(γ, λ))

)
.

IfN E
p(γ|F)

[
f̄(γ)VN (γ)

]
is strictly bounded away from 0 asN → ∞, then

sup
t̃∈[0,1]

|E(t̃)| → ∞ in the Bayesian von–Mises expansion.
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Experiments

Example: Poisson regression with Gamma-distributed random effects

For g = 1, . . . , G, λg
iid∼ Gamma(α, β) for fixed α, β

For n = 1, . . . , N, gn
iid∼ Categorical(1, . . . , G), yn|λn, γ, gn

iid∼ Poisson(γλgn ).

xn = (yn, gn) are IID given λ, γ.Write log p(X|λ, γ;w) =
N∑

n=1

wn`n(λ, γ).
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More experimental results for Gamma–Poisson mixtures

We ran simulations of the

Gamma–Poisson mixture with

different ratios ofN/G

(average observations per group).

• WhenN/G is small:

• IJ is biased significantly

downwards

• Bootstrap is biased

somewhat downwards

• WhenN/G is larger:

• Both improve

• Both remain somewhat

biased

• The IJ and bootstrap

perform similarly
Figure 2: The error of the IJ and bootstrap covariances for

different values ofN andG. The y-axis shows the difference

betweenN(V − V̂sim), where V is either V̂IJ or V̂Boot.
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Exchangeable units. (A contradiction?)

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With Gamma REs, one RE per observation, and appropriate prior parameters,

these are the same model, with the same p(γ|X).

Is E
p(γ|X;w)

[γ] linear in the data weights or not?
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Exchangeable units. (A contradiction?)

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With Gamma REs, one RE per observation, and appropriate prior parameters,

these are the same model, with the same p(γ|X).

Is E
p(γ|X;w)

[γ] linear in the data weights or not?

Trick question! We weight a log likelihood contribution, not a datapoint.

log p(X|γ;wm) =
N∑

n=1

wm
n log p(xn|γ) log p(X|γ, λ;wc) =

N∑
n=1

wc
nlog p(xn|λ, γ)

The two weightings are not equivalent in general.

What is the right exchangeable unit for a particular problem?

18



Exchangeable units: Experimental results revisited

Our results were actually computed on identical datasets with G = N and gn = n.

Uses log p(xn|γ):
ψn = E

p(γ|X)

[
γ̄ ¯̀n(γ)

]

Not easily computable from

γ, λ ∼ p(γ, λ|X)

in general.

Uses log p(xn|γ, λ):
ψn = E

p(γ,λ|X)

[
γ̄ ¯̀n(γ, λ)

]

Easily computable from

γ, λ ∼ p(γ, λ|X).

May still be useful when p(λ|X)

is somewhat concentrated.
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Observations and consequences

• For finite–dimensional models which concentrate asymptotically:

• Posterior expectations are approximately linear in data weights

• The linearized variance estimate (infinitesimal jackknife) is consistent

• The residual of the von Mises expansion vanishes

• For high–dimensional models which marginally concentrate only asymptotically:

• Posterior expectations are not approximately linear in data weights

• The linearized variance estimate (infinitesimal jackknife) is inconsistent

• The residual of the von Mises expansion does not vanish

• Even if the error E(w) does not vanish, it can still be small enough in practice.

... Especially given the linear approximation’s huge computational advantage.

• When the weighting is linear, there are many other applications:

• Cross-validation

• Conformal inference

• Identification of influential subsets

• When the weighting is non–linear, the inconsistency results should apply more widely:

• The EM algorithm

• The nonparametric bootstrap

• Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466)
(Major update in progress, coming soon.)
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