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Economist 2016 Election Model [Gelman and Heidemanns, 2020]
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Economist presidential election model (2016 data)
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A time series model to predict the 2016 US presidential
election outcome from polling data.
Model:

* X ==x1,...,zN = Polling data (N = 361).

* 0 = Lots of random effects (day, pollster, etc.)

* f(#) = Democratic % of vote on election day

Typically, we compute Markov chain Monte Carlo
(MCMC) draws from the posterior p(6|X).

We want to know [E “(0)].
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Typically, we compute Markov chain Monte Carlo
(MCMC) draws from the posterior p(6|X).
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The people who responded to the polls were randomly selected.
If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]
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The people who responded to the polls were randomly selected.
If we had selected a different random sample, how much would our estimate have changed?

Idea: Re-fit with bootstrap samples of data [Huggins and Miller, 2023]

[ Problem: Each MCMC run takes about 10 hours (Stan, six cores). ]




[ Proposal: Use full-data posterior draws to form a linear approximation to data reweightings. ]
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[ Proposal: Use full-data posterior draws to form a linear approximation to data reweightings. ]

Economist presidential election model (2016 data) National vote on election day
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Compute time for 100 bootstraps: 51 days

Compute time for the linear approximation: = Seconds
(But note the approximation has some error)
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» Argue that the variance estimates are inconsistent, but maybe not too bad in practice
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» Data reweighting
+ Write the change in the posterior expectation as linear component + error
* The linear component can be computed from a single run of MCMC
« Finite-dimensional problems with posteriors which concentrate asymptotically
* As N — oo, the linear component provides an arbitrarily good approximation
+ Consistent variance estimates (the errors vanish in aggregate)
* High-dimensional problems

* The linear component is the same order as the error
+ Even for parameters which concentrate a posteriori, even as N — oo
» Argue that the variance estimates are inconsistent, but maybe not too bad in practice

» Some implications and future work
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Data re-weighting.
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The re-scaled slope N1y, is known as the “influence function” at data point z,.
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Data re-weighting.

[ How can we use the approximation? ]

Assume the slope is computable and error is small.

N
P(@\IJE(;w) [f(e)] - ;n(gE\:X) [f(e)] - ; ¥ (wn = 1) énlw)

Bootstrap. Draw bootstrap weights w ~ p(w) = Multinomial (N, N~ 1).

Bootstrap variance = Var ( E
p(w) \p(0|X;w)

N
= Var <Z wn(wn - 1) + 571(””))

o))

p(w) —1
1 Y 2
=— Z (wn — w) + Term involving &y, (w) forn =1,..., N
n=1
11 & _
~ \w 2 (4 -9) >

“Infinitesimal jackknife variance estimate”



Expressions for the slope and error
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Expressions for the slope and error

[ How to compute the slopes ,,? How large is the error £(w)? ]

For simplicity, let us consider a single weight for the moment.

E 0))— E 0)] = —-1)+&n
(01X wn) [£(0)] 2(0]%) [£(0)] = vn(wn )+ En(w)
Let an overbar denote “posterior—mean zero.” For example, f(0) := f(6) — E_ [f(0)].

p(0|X)

By dominated convergence and the mean value theorem, for some w,, € [0, wy]:

Yn=_E_[fO)n(0)] En(w)= [7(6)2n(6) 2 (8)] (wn — 1)

1
— E
2 p(0| X;m)

p(0]1X)
Estimatable with MCMC! Cannot compute directly (don’t know )
= Op(N~ 1) under posterior concentration = Op (N ~2) under posterior concentration

The scaling O, (N ~2) for the error is classical for a particular weight [Kass et al., 1990].

For variance estimation, we need (and prove) conditions under which the Op, (N ~2) scaling
applies sufficiently uniformly in all the weights.



Variance consistency theorem
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» Assume (sketch): A well-behaved MAP maximum a posteriori estimator 0 exists.
* The dimension of 6 is fixed as N — oo
» The expected log likelihood has a strict maximum at 6 o
» The observed log likelihood statisfies 0 — 0o
* The expected log likelihood Hessian is negative definite at
+ Assume (sketch): We can apply standard asymptotics.
+ The log prior and log likelihood are four times continuously differentiable
+ The prior is proper, and a technical set of prior expectations are finite
» The log likelihood and its derivatives are dominated by a square—integrable envelope function for
all 6 in a neighborhood of 6,



Variance consistency theorem

[ How do the results for a single weight translate into variance estimates? ]

N
1
% E _—E Term involving &, (w) forn = 1,..., N
p(f})r) (p(9|X,w) [f(6) > 72 < ) + Term involving £y, (w) for n ,

» Assume (sketch): A well-behaved MAP maximum a posteriori estimator 0 exists.
* The dimension of 6 is fixed as N — oo
» The expected log likelihood has a strict maximum at 6 o
» The observed log likelihood statisfies 0 — 0o
» The expected log likelihood Hessian is negative definite at 6
+ Assume (sketch): We can apply standard asymptotics.
+ The log prior and log likelihood are four times continuously differentiable
+ The prior is proper, and a technical set of prior expectations are finite
» The log likelihood and its derivatives are dominated by a square—integrable envelope function for
all @ in a neighborhood of 6

(Theorem 2 [Giordano and Broderick, 2023]: Under the above assumptions,

\/ﬁ( (HIP‘IX)[ g9(0)] —g(0 oo)) dist N (0,V9)  [Kleijn and Van der Vaart, 2012]
p — 00

1 —\ 2 b
U._ -~ prol g S
and V"W := — g (wn w) — V9. (Our contribution)
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Negative binomial experiment

[ Example: Negative binomial models with an unknown parameter ~y. ]
Forn=1,...,N letxn|y g NegativeBinomial (r, ) for fixed 7.

Write log p(X |y, w) Z wnlp (Y

Negative Binomial model
leaving out single datapoints with N = 800
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0.0000 1
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Linear approximation

-0.0010 1

-0.0015 T T T T
-1e-03 -5e-04 0e+00 5e-04 1e-0

Actual difference in E[y|X]



Data Analysis Using Regression and Multilevel/Hierarchical Models.

N<240 N>=240

Jetaweied ofeos by

We ran rstanarm on 56 different models
on 13 different datasets from Gelman and
Hill [2006], including Gaussian and lo-
gistic regression, fixed and mixed-effects
models.

Density of distinct covariance estimates
T ——

_M
A

2 R PR
Relative error for the bootstrap.

Across all models, we estimate 799 dis- [ ot e [ s

tinct covariances (regression coefficients

and log scale parameters). Figure 1: The distribution of the relative errors.
Log scale parameters include all variances or
Using the bootstrap as ground truth, com-  covariances that involve at least one log scale

pute the relative errors: parameters.
VBayes - VBoot d Vi] - VBoot .
[Voor| an Vooot| Total compute time for all models:
00 00
Initial fit: 1.6 hours
Bootstrap: 381.5 hours

Linear approximation: A few minutes



How to connect to the election data?

[ Problem: MCMC is only interesting when the posterior doesn’t concentrate. ]
Economist presidential election model (2016 data) National vote on election day
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Bayesian posterior
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Variance (log 10 scale)
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High dimensional problems

[ Example: Exponential families with random effects (REs) A and fixed effects ~. ]

If the observations per random effect remains bounded as N — oo, then

 Parameter A (“local”) grows in dimension with N.
» Parameter v (“global”) is finite-dimensional.

+ Marginally p(A|X) does not concentrate.

+ Marginally, p(+|X') concentrates.



High dimensional problems

[ Example: Exponential families with random effects (REs) A and fixed effects ~. ]

If the observations per random effect remains bounded as N — oo, then

 Parameter A (“local”) grows in dimension with N.
» Parameter v (“global”) is finite-dimensional.
+ Marginally p(A|X) does not concentrate.

+ Marginally, p(+|X') concentrates.

In general, we cannot hope for an asymptotic analysisof ~E  [f()\)].
p(AX)

Can we save the approximation when some parameters concentrate?

Does the residual vanish asymptotically for w,, E [fMM?
p(v|X5wn)




High dimensional problems

We assume that p(-y|X') concentrates but p(A|X') does not. By our series expansion:
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High dimensional problems

We assume that p(-y|X') concentrates but p(A|X') does not. By our series expansion:

K - E =
p(7, A X5wn ) bl (7, A X) gl
wn(w" - 1) + (9,,(71))
7 1 _
= By (V)] (wn —1 = 70 (7, N)?] (wn — 1)2
P(1AIX) B¢ ) 2otrfion LY al )

[Zn (v, )\)]](wn ) +1 oE [f;f E  [la(1,2)?] ](wn 1

E ['7 E -
p(v[X) L p(A|v,X) 2p(v|X5@n) b p(A X, y50n)

F1(%) Fa(v)



High dimensional problems

We assume that p(-y|X') concentrates but p(A|X') does not. By our series expansion:

E - E =
(7, A X5wn) [/ﬂ p(v,A|X) [’Y]
wn(w" - 1) + 5,,(71))
7 1 _
= E Yln, (v, A) | (wy, — 1 - _/[n,”,/\Q ’LUn,—12
P(1AIX) B¢ ) 2prA Ky LY I )
_ 1 B ‘
= E | E (v, A wn — 1 + = E 5 E T, N2 | (wn — 1
PWlX)[’YP(M%X) [ty )”( ) 2p(w|x;mﬂ)[v PN X, 730n) [En ) ”(
1o ()
1
= E [RFF wy — 1 - E 5 Fo (V)] (wn — 1)2
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Op(N™h) Op(N~1)
(by p(y|X) concentration) (by p(~| X ) concentration)
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High dimensional problems

We assume that p(-y|X') concentrates but p(A|X') does not. By our series expansion:

E - E =
p(7, A X5wn ) b (7, X) ]
wn(w" - 1) +&n (“))
7 1 _
= By (V)] (wn —1 = 70 (7, N)?] (wn — 1)2
P(1AIX) B¢ ) 2otrfion LY al )
_ 1 ) ‘
= E [ E [B@N]w@-1 45 B3 B [0(10)] (w1
p(vIX)[’YP(M%X)[ g )]]( ) 2p(w|x;i:n)[’) p(A\X,w:mn)[ ) ”(
N—
Fi(v) o)
1 b
= E [RFF wy — 1 - E 5 Fo (V)] (wn — 1)2
B R~ 1) TN ) T
N —
Op(N™h) Op(N~1)
(by p(y|X) concentration) (by p(~| X ) concentration)
= Yn=O0p(N7T) En(w) = Op(N 1)

Corollary [Giordano and Broderick, 2023]:

remains non-linear as N — oo.

In general, w, — N E - E
& (p<w|x;wn>M P10 M)




Bayesian von—-Mises Expansion

[ How can we apply the single—weight result to variance computations? ]




Bayesian von—-Mises Expansion

[ How can we apply the single—weight result to variance computations? ]

Define the “generalized posterior” functional (@ may be growing in dimension):
TGN = [ 9(8) exp (N [ £(x0]0)G(dxo)) (6)do
T Jexp (N [ £(z0|0)G(dzo)) 7(0)do
Let IF v denote the empirical distribution over x,,. Then
[ 9(0)exp (N % X0, (wnl0) ) m(6)d0

E )] =
w1 Jexp (N% zﬁzle(xnw)) (6)do

=T(Fy,N).



Bayesian von—-Mises Expansion

[ How can we apply the single—weight result to variance computations? ]

Define the “generalized posterior” functional (@ may be growing in dimension):
S g(0) exp (N [ £(z0]0)G(dzo)) 7(0)d6
Jexp (N [ £(z0|0)G(dzo)) 7(0)do
Let IF v denote the empirical distribution over x,,. Then
o o) 9(6) exp (N SN £@al0)) w(0)d0
g =
p(6]1%) Jexp (N4 S0, e(wnlo)) w(6)do

T(G,N) =

=T(Fy,N).

Let IF denote the true distribution of x,,, and let IF’;V =tFny 4+ (1 —t)F.
We can study the von Mises expansion:

OT(Ft,, N

VR (| B @) - TC N)) —vx TEN)

ot (Fn —TF) +E(2)

t=0

N
Z ) +op(1) +&(

T
N

Infinitesimal jackknife estimator

Inconsistency is suggested if £ (%) fails to vanish.



Bayesian von—-Mises Expansion Results

Theorem 3 [Giordano and Broderick, 2023] (sketch):
(Consistency of the von-Mises expansion in finite dimensions)
Under slightly stronger conditions our original finite—dimensional posterior consistency result,

sup |E(#)] — 0 in the Bayesian von-Mises expansion.
t€(0,1]




Bayesian von—-Mises Expansion Results

~

(Theorem 3 [Giordano and Broderick, 2023] (sketch):
(Consistency of the von-Mises expansion in finite dimensions)
Under slightly stronger conditions our original finite—dimensional posterior consistency result,

sup |E(#)] — 0 in the Bayesian von-Mises expansion.
te[0,1]

(Theorem 4 [Giordano and Broderick, 2023] (sketch, not yet on arxiv):
(Inconsistency of the von—Mises expansion in high dimensional exponential families)
Assume that z,, comes with a equiprobable group assignment g, € 1,...,G.
Conditional on g, z, is modeled as a finite-dimensional exponential family given A, :

log p(2n|gn = 9,7, X) = 7(xn)Tng (v, A) + Constant.

Define the average product of second moments:

1 G
V() :=Eg§:jltr(wgn>[r<xn>r<xn>w Gov, ().

e [f(7)VN (7)] is strictly bounded away from 0 as N — oo, then
p(y

sup |E(f)] — oo in the Bayesian von-Mises expansion.
t€[0,1]




[ Example: Poisson regression with Gamma-distributed random effects ]

Forg=1,...,G, X\g i Gamma(e, ) for fixed o, 8

Forn=1,...,N, gn ud Categorical(1,...,G), yn|An, 7, 9n ud Poisson(yAg,, )-

N
Tn = (Yn, gn) are IID given X, y. Write log p(X |\, v;w) = Z Wnln (A, 7).

n=1
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Poisson random effect model
leaving out single datapoints with N = 800
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More experimental results for Gamma-Poisson mixtures

N =100 N =200 N =500 N = 1000

0.054

0.00 — N z

1 <

. . -0.05 * + (o)

We ran simulations of the { T } { { { &
Gamma-Poisson mixture with 15
different ratios of N /G 005

) £ 00 z

(average observations per group). £ oos] + } I i } + { 5

S 1 S

) £ o0 E Method
* When N /G is small: g0 o Boot
+ 1J is biased significantly g 0% +—1 I -V

< 0.00 T X z

downwards e 1 i f I f >

T 2 -005 ¢ } fl’

* Bootstrap is biased S 5404 + o
somewhat downwards -0.15
« When N /G is larger: 005

. 0.001—F T - z

+ Both improve 00sd 1 i i + { T f ®

» Both remain somewhat -0.104 B
biased -0.15

Boot ] Boot U Boot | Boot |

+ The IJ and bootstrap

erform similarl
P ¥ Figure 2: The error of the 1J and bootstrap covariances for

different values of N and G. The y-axis shows the difference
between N (V' — Viim ), where V is either Vj; or Vioor.
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Exchangeable units. (A contradiction?)

Negative binomial observations. Poisson observations with random effects.

Asymptotically linear in w. Asymptotically non-linear in w.

With Gamma REs, one RE per observation, and appropriate prior parameters,
these are the same model, with the same p(y|X).

Is E  [v]linear in the data weights or not?
p(v|X;w)

Trick question! We weight a log likelihood contribution, not a datapoint.

N N
log p(X|y;w™) = > witlogplanly)  logp(X|y, Asw) =Y wilogp(anlX,v)

n=1 n=1

The two weightings are not equivalent in general.

[ What is the right exchangeable unit for a particular problem? ]




Exchangeable units: Experimental results revisited

Our results were actually computed on identical datasets with G = N and g, = n.

Negative Binomial model
leaving out single datapoints with N = 800
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Observations and consequences

* For finite—dimensional models which concentrate asymptotically:
« Posterior expectations are approximately linear in data weights
* The linearized variance estimate (infinitesimal jackknife) is consistent
+ The residual of the von Mises expansion vanishes
* For high—dimensional models which marginally concentrate only asymptotically:
 Posterior expectations are not approximately linear in data weights
+ The linearized variance estimate (infinitesimal jackknife) is inconsistent
 The residual of the von Mises expansion does not vanish
+ Even if the error £€(w) does not vanish, it can still be small enough in practice.
... Especially given the linear approximation’s huge computational advantage.
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* When the weighting is linear, there are many other applications:
+ Cross-validation
» Conformal inference
« Identification of influential subsets
* When the weighting is non—linear, the inconsistency results should apply more widely:

* The EM algorithm
* The nonparametric bootstrap
* Local prior sensitivity measures
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 The residual of the von Mises expansion does not vanish

+ Even if the error £€(w) does not vanish, it can still be small enough in practice.
... Especially given the linear approximation’s huge computational advantage.

* When the weighting is linear, there are many other applications:
+ Cross-validation
» Conformal inference
« Identification of influential subsets
* When the weighting is non—linear, the inconsistency results should apply more widely:

* The EM algorithm
* The nonparametric bootstrap
* Local prior sensitivity measures

Preprint: Giordano and Broderick [2023] (arXiv:2305.06466)
(Major update in progress, coming soon.)
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