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Are US non-voters becoming more Republican?

Blue Rose research says yes:

“Politically disengaged voters have

become much more Republican, and

because less-engaged voters swung away

from [Democrats], an expanded electorate

meant a more Republican electorate.”

(Blue Rose Research 2024)

(major professional pollsters)

On Data and Democracy says no:

“Claims of a decisive pro-Republican shift

among the overall non-voting population

are not supported by the most reliable,

large-scale post-election data currently

available.”

(Bonica et al. 2025)

(major professional researchers)

• The problem is very hard (it’s difficult to accurately poll non–voters)

• Different data sources

• ??? Different statistical methods

• Blue Rose uses Bayesian hierarchical modeling (MrP)

• On Data and Democracy is using calibration weighting (CW)

Our contribution

We define “MrP local equivalent weights” (MrPlew) that:

• Are easily computable from MCMC draws and standard software, and

• Provide MrP versions of key weighting estimator diagnostics.

⇒MrPlew provides direct comparisons between MrP and calibration weighting.
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Outline

Weighting (linear) estimators are great — they come with easy-to-understand diagnostics.

This talk is about making versions of such diagnostics for complicated non-linear models.

The key idea is to convert the diagnostic into a local sensitivity analysis of this form:

1. Assume your initial model was accurate

2. Select some perturbation your model should be able to capture

3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

I’ll do this carefully for covariate balance and MCMC.

But many other variants are possible!

2



Outline

Weighting (linear) estimators are great — they come with easy-to-understand diagnostics.

This talk is about making versions of such diagnostics for complicated non-linear models.

The key idea is to convert the diagnostic into a local sensitivity analysis of this form:

1. Assume your initial model was accurate

2. Select some perturbation your model should be able to capture

3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

I’ll do this carefully for covariate balance and MCMC.

But many other variants are possible!

2



Outline

Weighting (linear) estimators are great — they come with easy-to-understand diagnostics.

This talk is about making versions of such diagnostics for complicated non-linear models.

The key idea is to convert the diagnostic into a local sensitivity analysis of this form:

1. Assume your initial model was accurate

2. Select some perturbation your model should be able to capture

3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

I’ll do this carefully for covariate balance and MCMC.

But many other variants are possible!

2



Outline

• Introduce the statisical problem

• Contrast calibration weighting and MrP

• Prior work: Equivalent weights for linear models

• Equivalent weights and implicit weights for non–linear models

• Our task: Rigorously justify using locally equivalent weights for diagnostics

• Locally equivalent weights for frequentist variance estimation

• Locally equivalent weights for covariate balance

• Describe classical covariate balance

• Introduce a MrPlew “local empirical consistency check”

• Theoretical support

• Examples of real-world results

• Other directions

• High–level restatement of the logic of our procedure

• Local versions of other common diagnostics for linear estimators

• Ongoing and future work
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The basic problem

We have a survey population, for whom we observe:

• Covariates x (e.g. race, gender, zip code, age, education level)

• Responses y (e.g. A binary response to “do you support candidate Z”)

We want the average response in a target population, in which we observe only covariates.

Observe (xi, yi) for i = 1, . . . , NS Observe xj for j = 1, . . . , NT

The problem is that the populations may be very different, maybe leading to bias. 1

How can we use the covariates to say something about the target responses?

1Photo copyright: Mark Taylor / naturepl.com
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Two approaches

We want µ := 1
NT

∑NT
j=1 yj , but don’t observe target yj . Let YS = {y1, . . . , yNS

}.

• Assume p(y|x) is the same in both populations,

• But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)

I Choose “calibration weights” wi

using only the regressors x

(e.g. raking weights)

I Choose E [y|x, θ] = m(θᵀx),

choose prior P(θ|Σ)P(Σ)

(e.g. Hierarchical logistic regression)

I Take µ̂WGT(YS) =
1

NS

∑NS
i=1 wiyi I Take ŷj = EP(θ|Survey data) [y|xj ] and

µ̂MrP(YS) =
1

NT

∑NT
j=1 ŷj

I Dependence on yi is clear I Dependence on yi very complicated

(Typically via MCMC draws from

P(θ|Survey data))

IWeights give interpretable diagnostics:

• Frequentist variability

• Regressor balance

• Partial pooling

I Black box

← Today, we’ll open the box and provide

MrP analogues of all these diagnostics
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Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a weighting estimator when ŷ is computed with OLS:

µ̂MrP(YS) =
1

NT

NT∑
j=1

ŷj =
1

NT

NT∑
j=1

x
ᵀ
j β̂︸︷︷︸

Linear in YS

Most existing literature on comparing weighting and MrP focus on such linear models. 2

But what if you use a non–linear link function? Or a hierarchical model?

“It would also be desirable to use nonlinear methods ... but then it would seem difficult

to construct even approximately equivalent weights. Weighting and fully nonlinear

models would seem to be completely incompatible methods.” — (Gelman 2007a)

2For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).
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Logistic regression is generally nonlinear

• Suppose the model ism(xᵀθ) = Logistic(xᵀθ), with MLE θ̂.

The map from YS 7→ m(xᵀj θ̂) is typically nonlinear.

Example: xi ∼ Unif[−0.5, 0.5], yi
iid∼ Binomial(1/2). Let ỹi(δ) = yi + δI (xi > 0.2).

The path δ 7→ YS(δ) is well-defined even when y is supposed to be binary!
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Many estimators are also well-defined for small enough δ under mild conditions.

(E.g., OLS, logistic regression MLE, Bayesian posterior.)
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iid∼ Binomial(1/2). Let ỹi(δ) = yi + δI (xi > 0.2).

The path δ 7→ YS(δ) is well-defined even when y is supposed to be binary!

For OLS, δ 7→ β̂(δ)x is linear. For logistic regression δ 7→ m(θ̂(δ)xj) is non-linear.

Figure 1: Simulated path through the space of responses 7



Approximately equivalent weights for (some) logistic regression MrP

• Suppose the model ism(xᵀθ) = Logistic(xᵀθ), with MLE θ̂.

• MrP is µ̂MrP(YS) =
1

NT

∑NT
j=1 m(xᵀj θ̂).

The map from YS 7→ m(xᵀj θ̂) is typically nonlinear.

But some sample averages ofm(xᵀj θ̂) can be approximately linear.

µ̂MrP(YS) =
1

NT

NT∑
j=1

m(xᵀj θ̂)

≈
∫

m(xᵀθ̂)PT (x)dx (Law of large numbers)

=

∫ PT (x)

PS(x)
m(xᵀθ̂)PS(x)dx (Multiply by PS(x)/PS(x))

≈
∫

(αᵀx)m(xᵀθ̂)PS(x)dx (By assumption)

≈ αᵀ 1

NS

NS∑
i=1

xim(xᵀi θ̂) (Law of large numbers)

= αᵀ 1

NS

NS∑
i=1

xiyi (Property of exponential family MLEs)
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≈ αᵀx for some α. Then MrP is a approximately a weighting estimator.

µ̂MrP(YS) =
1

NT

NT∑
j=1

m(xᵀj θ̂)

≈
∫

m(xᵀθ̂)PT (x)dx (Law of large numbers)

=

∫ PT (x)

PS(x)
m(xᵀθ̂)PS(x)dx (Multiply by PS(x)/PS(x))

≈
∫

(αᵀx)m(xᵀθ̂)PS(x)dx (By assumption)

≈ αᵀ 1

NS

NS∑
i=1

xim(xᵀi θ̂) (Law of large numbers)

= αᵀ 1

NS

NS∑
i=1

xiyi (Property of exponential family MLEs)

8



Approximately equivalent weights for (some) logistic regression MrP

• Suppose the model ism(xᵀθ) = Logistic(xᵀθ), with MLE θ̂.

• MrP is µ̂MrP(YS) =
1

NT

∑NT
j=1 m(xᵀj θ̂).

Example

Suppose
PT (x)
PS(x)

≈ αᵀx for some α. Then MrP is a approximately a weighting estimator.

µ̂MrP(YS) =
1

NT

NT∑
j=1

m(xᵀj θ̂) =
1

NS
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Note: The derivatives wMrP
i now have two potentially distinct interpretations:

• Equivalent weights: A characterization of YS 7→ µ̂MrP(YS) for diagnostics

• Implicit weights: An estimate of PT (x)/PS(x)
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• Implicit weights: An estimate of PT (x)/PS(x)
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.

Note: The derivatives wMrP
i now have two potentially distinct interpretations:

• Equivalent weights: A characterization of YS 7→ µ̂MrP(YS) for diagnostics
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3For MLEs,
∂µ̂MrP(YS )

∂yi
is given by the implicit function theorem. (Krantz and Parks 2012; G., Stephenson, et al. 2019)
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Local weights for nonlinear hierarchical logistic regression MrP

• Suppose the model ism(xᵀθ) = Logistic(xᵀθ).

• Set a hierarchical prior P(θ|Σ)P(Σ), use MCMC to draw from P(θ|Survey data).

• MrP is µ̂MrP(YS) =
1

NT

∑NT
j=1 EP(θ|Survey data)

[
m(xᵀj θ)

]
.

No reason to think YS 7→ µ̂MrP(YS) is even approximately globally linear.

But can still compute and analyze wMrP
i := NS

∂µ̂MrP(YS)
∂yi

using Bayesian sensitivity analysis!4

MrPweights for MCMC

wMrP
i := NS

∂µ̂MrP(YS)

∂yi
= NS

1

NT

NT∑
j=1

CovP(θ|Survey data)

(
m(xᵀj θ), θ

ᵀxi

)
︸ ︷︷ ︸

Can estimate without rerunning MCMC!

The derivatives wMrP
i again have two potentially distinct interpretations:

• Locally equivalent weights: A characterization of YS 7→ µ̂MrP(YS) for diagnostics

• Locally implicit weights: An estimate of PT (x)/PS(x)

This talk will focus only on locally equivalent weights. (Implicit weights is ongoing work!)

4Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.
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Locally equivalent weights for hierarchical logistic regression MrP

• Suppose the model ism(xᵀθ) = Logistic(xᵀθ).

• Set a hierarchical prior P(θ|Σ)P(Σ), use MCMC to draw from P(θ|Survey data).

• MrP is µ̂MrP(YS) =
1

NT

∑NT
j=1 EP(θ|Survey data)

[
m(xᵀj θ)

]
.

MrP locally equivalent weights (MrPlew)

For new data ỸS , form aMrP locally equivalent weighting:

µ̂MrP(ỸS) ≈ µ̂MrP(YS) +

NS∑
i=1

wMrP
i (ỹi − yi)

Our task is to rigorously show that even such local weights can be meaningfully used

diagnostically in the same ways we use global weights.
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Real Data: Marital Name Change Survey

Analysis of changing names after marriage5.

• Target population: ACS survey of US population 2017–2022

• Survey population: Marital Name Change Survey (from Twitter)

• Respose: Did the female partner keep their name after marriage?

• For regressors, use bins of age, education, state, and decade married.

MrP computed with brms (Bürkner 2017):

kept_name ∼ (1 | age_group) + (1 | educ_group) + (1 | state_name) + (1 | decade_married)

CW used raking on coarsened regressor marginals (survey::calibrate from Lumley (2024))

NS = 4, 364 NT = 4, 085, 282

Uncorrected survey mean:
1

NS

NS∑
i=1

yi = 0.462

Raking: µ̂WGT(YS) = 0.263

MrP: µ̂MrP(YS) = 0.288 (Post. sd = 0.0169)

5Based on Alexander (2019), Cohen (2019), and Ruggles et al. (2024).
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The weights can look very different!

The weights can look very different! Does this mean anything?

Yes: The “spread” relates to frequentist variance just as in weighting estimators.

This is essentially a corollary of our earlier work on the Bayesian infinitesimal jackknife.6

What about covariate balance?

Figure 2: Weight comparison for the Name Change dataset

6See G. and Broderick (2024). For weighting variances, see, e.g. , Deville, Särndal, and Sautory (1993) and Fuller (2011). 13
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Introduction to covariate balance: What are we weighting for?7

Target average response =
1

NT

NT∑
j=1

yj ≈
1

NS

NS∑
i=1

wiyi = Weighted survey average response

We can’t check this, because we don’t observe yj .

But we can check whether:

1

NT

NT∑
j=1

xj
check
=

1

NS

NS∑
i=1

wixi

Weights that pass this check satisfy “covariate balance” for x.

You can check covariate balance for any weighting estimator, and any function f(x).

Recall that raking calibration weights aim to exactly balance some set of regressors.

7Pun borrowed from Solon, Haider, and Wooldridge (2015)
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Balance checks as local sensitivity

One reason to balance f(x) is because we think E [y|x] might plausibly vary ∝ f(x), and want

to check whether our estimator can capture this variability.

Key idea: Define a data perturbation that captures this intuition.

15



Balance checks as local sensitivity

One reason to balance f(x) is because we think E [y|x] might plausibly vary ∝ f(x), and want

to check whether our estimator can capture this variability.

Balance–informed sensitivity check (BISC) (informal)

Pick a small δ > 0 and an f(·). Define a new response variable ỹ such that

E [ỹ|x] = E [y|x] + δf(x).

We know the change this is supposed to induce in the target population.

Covariate balance checks whether our estimators produce the same change.
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Balance–informed sensitivity check (BISC) (formal)

Pick a small δ > 0 and an f(·). Define a new response variable ỹ such that

E [ỹ|x] = E [y|x] + δf(x).

We know the expected change this perturbation produces in the target distribution:

E [µ(ỹ)− µ(y)|x] =
1

NT

NT∑
j=1

(E [ỹ|xp] − E [y|xp] ) = δ
1

NT

NT∑
j=1

f(xj)

Then, check whether your estimator µ̂(·) produces the same change for observed ỸS , YS :

µ̂(ỸS)− µ̂(YS)︸ ︷︷ ︸
Replace weighted averages
with changes in an estimator

check
≈ δ

1

NT

NT∑
j=1

f(xj).

15



Balance checks as local sensitivity

When µ̂(·) = µ̂WGT(·), BISC recovers the standard covariate balance check.

µ̂WGT(ỸS)− µ̂WGT(YS)︸ ︷︷ ︸
Replace weighted averages
with changes in an estimator

=
1

NS

NS∑
i=1

wiỹi −
1

NS

NS∑
i=1

wiyi

=
1

NS

NS∑
i=1

wi(yi + f(xi))−
1

NS

NS∑
i=1

wiyi

=
1

NS

NS∑
i=1

wif(xi)

check
= δ

1

NT

NT∑
j=1

f(xj).

We will study µ̂(·) = µ̂MrP(·).
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BISC for MrP

Suppose I have ỹ such that E [ỹ|x] = E [y|x] + δf(x).

Now I need to evaluate µ̂MrP(ỸS)− µ̂MrP(YS).

Problem: µ̂MrP(·) is computed with MCMC.

• Each MCMC run typically takes hours, and

• MCMC output is noisy, and µ̂MrP(ỸS)− µ̂MrP(YS) may be small.

Solution: Use our local approximation, MrPlew!

Balance informed sensitivity check with MrPlew:

For a wide set of judiciously chosen f(·), check

µ̂MrP(ỸS)− µ̂MrP(YS) ≈
1

NS

NS∑
i=1

wMrP
i (ỹi − yi)

≈ δ
1

NS

NS∑
i=1

wMrP
i f(xi)

check
≈ δ

1

NT

NT∑
j=1

f(xj).︸ ︷︷ ︸
What you actually check
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Generating ỹ

• We have defined BISC in terms of ỹ such that E [ỹ|x] = E [y|x] + δf(x)

• We have approximated µ̂MrP(ỸS)− µ̂MrP(YS) for ỹ ≈ y

How to get such a ỹ? Recall y is binary!

Two solutions, with their own pros and cons:

Option 1: Force ỹ to be binary.

1. Make some guess m̂(x) ≈ E [y|x]
• E.g. Posterior mean, or

• Shrunken posterior mean, or

• Some values that gives the same

posterior

2. Take ui
iid∼ Unif(0, 1)

3. Assume yi = I (ui ≤ m̂(xi))

4. Draw un|yn
5. Set ỹi = I (ui ≤ m̂(xi) + δxi)

Option 2: Allow ỹ to take generic values.

1. Set ỹi = yi + δf(xi).

2. Then you’re done.

3. There is nothing else to do.

4. This space deliberately left blank.

Pros and cons:

• Realistic

• Have to pick m̂(x)

• ỸS − YS not infinitesimally small

• Use for checks & experiments

Pros and cons:

• Not realistic

• No additional assumptions

• ỸS −YS may be infinitesimally small

• Use for theory
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• We have defined BISC in terms of ỹ such that E [ỹ|x] = E [y|x] + δf(x)

• We have approximated µ̂MrP(ỸS)− µ̂MrP(YS) for ỹ ≈ y
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Option 1: Force ỹ to be binary.

1. Make some guess m̂(x) ≈ E [y|x]
• E.g. Posterior mean, or

• Shrunken posterior mean, or

• Some values that gives the same

posterior

2. Take ui
iid∼ Unif(0, 1)

3. Assume yi = I (ui ≤ m̂(xi))

4. Draw un|yn
5. Set ỹi = I (ui ≤ m̂(xi) + δxi)

Option 2: Allow ỹ to take generic values.

1. Set ỹi = yi + δf(xi).

2. Then you’re done.

3. There is nothing else to do.

4. This space deliberately left blank.

Pros and cons:

• Realistic

• Have to pick m̂(x)

• ỸS − YS not infinitesimally small

• Use for checks & experiments

Pros and cons:

• Not realistic

• No additional assumptions

• ỸS −YS may be infinitesimally small

• Use for theory
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Theory

When is the local approximation accurate?

BISC Theorem: (sketch)

Take ỹi = yi + δf(xi).

We state conditions for Bayesian hierarchical logistic regression under which

sup
f∈F

∣∣∣∣∣∣µ̂MrP(ỸS)− µ̂MrP(YS)− δ

NS∑
i=1

wMrP
i f(xi)

∣∣∣∣∣∣ = Small

asN →∞

...for a very broad class of F . 8

Uniformity justifies searching for “imbalanced” f .

The uniformity result builds on our earlier work on uniform and finite–sample error bounds for

Bernstein–von Mises theorem–like results9.

8F can be any Donsker class of measurable functions with uniformly bounded E [xf(x)] .
9G. and Broderick 2024; Kasprzak, G., and Broderick 2025.

19



Theory

When is the local approximation accurate?

BISC Theorem: (sketch)
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Covariate balance for primary effects

Figure 3: Imbalance plot for primary effects in the Name Change dataset
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Covariate balance for interaction effects

Figure 4: Imbalance plot for select interaction effects in the Name Change dataset
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Predictions

Figure 5: Predictions on binary data for the Name Change dataset
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Predictions and actual MCMC results

Figure 6: Predictions and refit on binary data for the Name Change dataset

Running ten MCMC refits: 10 hours Computing approximate weights: 16 seconds
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Partial Pooling

By applying the same idea to subsets of the target population,

you can measure MrP partial pooling.

Figure 7: Region partial pooling for the Name Change dataset
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Future work

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on YS .

But the high level idea can be extended much more widely:

1. Assume your initial model was accurate

2. Select some perturbation your model should be able to capture

3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

Checks of this form give generalized versions of many standard linear model diagnostics:

• Local “Fisher consistency” checks

• Checks for exogeneity of residuals (even without residuals)

• Checks for whether inverse Fisher information
check
= score covariance (even without scores)
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Future work

Student contributions and ongoing work:

• Vladimir Palmin is working on extending MrPlew to lme4

• Sequoia Andrade is working on generalizing to other local sensitivity checks

• Lucas Schwengber is working on novel flow–based techniques for local sensitivity

• (Currently recruiting!) Doubly–robust Bayesian MrP (the “implicit weights” version)

Vladimir Palmin Sequoia Andrade Lucas Schwengber

Preprint and R package coming soon!
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Extra slides
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Frequentist variance estimation

Let V̂ar (·) denote the sample variance.

Calibration weighting standard errors sketch: 10

If we have µ̂WGT(YS) =
1

NS

∑NS
i=1 wiyi and a consistent residual estimate εi, then

V̂ar (wiεi) ≈ Var
(√

NS µ̂
WGT(YS)

)
.

10E.g. , Deville, Särndal, and Sautory (1993) and Fuller (2011).
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If we have µ̂WGT(YS) =
1

NS

∑NS
i=1 wiyi and a consistent residual estimate εi, then

V̂ar (wiεi) ≈ Var
(√

NS µ̂
WGT(YS)

)
.

MrPlew Standard error consistency theorem sketch (Our contribution):11

For Bayesian hierarchical logictic regression, define εi = yi − EP(θ|Survey data)
[
m(xᵀi θ)

]
.

We state mild conditions under which, asNS →∞, for some µ∞ and variance V ,√
NS

(
µ̂MrP(YS)− µ∞

)
→ N (0, V ) and

V̂ar
(
wMrP

i εi
)
→ V.

The use of wMrP
i is analogous to the use of wi for frequentist variance estimation.

10E.g. , Deville, Särndal, and Sautory (1993) and Fuller (2011).
11This is essentially a corollary of our earlier work on the Bayesian infinitesimal jackknife. (G. and Broderick 2024)
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Standard error estimation experiment

Figure 8: Frequentist standard deviation estimates

Running fifty MCMC parametric bootstraps: ≈ 79 hours

Computing approximate weights: 16 seconds
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Figure 8: Frequentist standard deviation estimates

Running fifty MCMC parametric bootstraps: ≈ 79 hours

Computing approximate weights: 16 seconds
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Real Data: Lax Philips

Analysis of national support for gay marriage.12

• Target population: US Census Public Use Microdata Sample 2000

• Survey population: Combined national-level polls from 2004

• Respose: “Do you favor allowing gay and lesbian couples to marry legally?”

• For regressors, use race, gender, age, education, state, region, and continuous statewide

religion and political characteristics, including some analyst–selected interactions.

Survey observations: NS = 6, 341

Target observations (rows): NT = 9, 694, 541

Uncorrected survey mean:
1

NS

NS∑
i=1

yi = 0.333

Raking: µ̂WGT = 0.33

MrP: µ̂MrP = 0.337 (Post. sd = 0.039)

12Based on Kastellec, Lax, and Phillips (2010), see also Lax and Phillips (2009).
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Covariate balance for primary effects

Figure 9: Imbalance plot for primary effects in the Gay Marriage dataset
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Covariate balance for interaction effects

Figure 10: Imbalance plot for select interaction effects in the Gay Marriage dataset

34



Predictions

Figure 11: Predictions on binary data for the Gay Marriage dataset
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Predictions and actual MCMC results

Figure 12: Predictions and refit on binary data for the Gay Marriage dataset

Running ten MCMC refits: 11 hours Computing approximate weights: 23 seconds
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Some generalized diagnostics

Regression

General models

Consistency /

Unbiased

y = θᵀx+ ε

ỹ = (θ + δ)ᵀx+ ε

θ̂(ỹ)
check
= θ̂(y) + δ

y = f(x, ε, θ)

ỹ = f(x, ε, θ + δ)

θ̂(ỹ)
check
= θ̂(y) + δ

Exogonous

residuals

y = θᵀx+ ε

ỹ = y + εz

θ̂(ỹ)
check
= θ̂(y)

y ∼ P(y|x) and P(x) = w

w̃ = w + δz

θ̂(w̃)
check
= θ̂(w)

Fisher

information

I := Fisher information

Σ := Score covariance

I−1 check
= Σ

y ∼ P(y|θ)

ỹ ∼ Importance sample y

using w̃ =
P(y|θ̂ + δ)

P(y|θ̂)

θ̂(w̃)
check
= θ̂(1) + δ
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ỹ = f(x, ε, θ + δ)

θ̂(ỹ)
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ỹ = y + εz

θ̂(ỹ)
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ỹ = f(x, ε, θ + δ)

θ̂(ỹ)
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check
= θ̂(y)

y ∼ P(y|x) and P(x) = w

w̃ = w + δz

θ̂(w̃)
check
= θ̂(w)

Fisher

information

I := Fisher information

Σ := Score covariance

I−1 check
= Σ

y ∼ P(y|θ)
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Weights by education for the Name Change analysis

38


