Weighting-Like Diagnostics for Nonlinear
Bayesian Hierarchical Models

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller
October 2025 Stanford Berkeley Joint Colloquium




Are US non-voters becoming more Republican?

Blue Rose research says yes:

“Politically disengaged voters have
become much more Republican, and
because less-engaged voters swung away
from [Democrats], an expanded electorate
meant a more Republican electorate.”

(Blue Rose Research 2024)
(major professional pollsters)

On Data and Democracy says no:

“Claims of a decisive pro-Republican shift
among the overall non-voting population
are not supported by the most reliable,
large-scale post-election data currently
available.”

(Bonica et al. 2025)
(major professional researchers)
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Our contribution

We define “MrP local equivalent weights” (MrPlew) that:

* Are easily computable from MCMC draws and standard software, and

* Provide MrP versions of key weighting estimator diagnostics.

=> MrPlew provides direct comparisons between MrP and calibration weighting.
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This talk is about making versions of such diagnostics for complicated non-linear models.

The key idea is to convert the diagnostic into a local sensitivity analysis of this form:

1. Assume your initial model was accurate
2. Select some perturbation your model should be able to capture
3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

I’ll do this carefully for covariate balance and MCMC.

But many other variants are possible!



« Introduce the statisical problem

» Contrast calibration weighting and MrP

» Prior work: Equivalent weights for linear models

» Equivalent weights and implicit weights for non-linear models

 Our task: Rigorously justify using locally equivalent weights for diagnostics



« Introduce the statisical problem
» Contrast calibration weighting and MrP
» Prior work: Equivalent weights for linear models
» Equivalent weights and implicit weights for non-linear models
 Our task: Rigorously justify using locally equivalent weights for diagnostics

 Locally equivalent weights for frequentist variance estimation



« Introduce the statisical problem
» Contrast calibration weighting and MrP
» Prior work: Equivalent weights for linear models
» Equivalent weights and implicit weights for non-linear models
 Our task: Rigorously justify using locally equivalent weights for diagnostics

 Locally equivalent weights for frequentist variance estimation

* Locally equivalent weights for covariate balance

* Describe classical covariate balance

* Introduce a MrPlew “local empirical consistency check”
* Theoretical support

» Examples of real-world results



« Introduce the statisical problem
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» Equivalent weights and implicit weights for non-linear models
 Our task: Rigorously justify using locally equivalent weights for diagnostics

 Locally equivalent weights for frequentist variance estimation

* Locally equivalent weights for covariate balance

* Describe classical covariate balance

* Introduce a MrPlew “local empirical consistency check”
* Theoretical support

» Examples of real-world results

 Other directions

+ High-level restatement of the logic of our procedure
» Local versions of other common diagnostics for linear estimators
* Ongoing and future work



The basic problem

We have a survey population, for whom we observe:

» Covariates x (e.g. race, gender, zip code, age, education level)

» Responses y (e.g. A binary response to “do you support candidate Z”)

‘We want the average response in a target population, in which we observe only covariates.
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» Responses y (e.g. A binary response to “do you support candidate Z”)

‘We want the average response in a target population, in which we observe only covariates.

/ﬁ

f .

Observe (x;,y;) fori =1,..., Ng \ Observe x; forj =1,..., Ny
The problem is that the populations may be very different, maybe leading to bias. !

How can we use the covariates to say something about the target responses?

Photo copyright: Mark Taylor / naturepl.com



Two approaches

We want p := /\% Zi\:Tl Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.



Two approaches

Nt

We want f := — 27:1

N Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)
» Choose “calibration weights” w; » Choose E [y[x, 0] = m(0Tx),
using only the regressors x choose prior P(0|X)P(X)

(e.g. raking weights) (e.g. Hierarchical logistic regression)



Two approaches

Nt

We want f := — 27:1

N Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)
» Choose “calibration weights” w; » Choose E [y[x, 0] = m(0Tx),
using only the regressors x choose prior P(0|X)P(X)
(e.g. raking weights) (e.g. Hierarchical logistic regression)
N N N
» Take N'WGT(YS) = NLS Zi:s1 WiYi » Take Yj = IE73(6‘\Survey data) [y‘xj] and

~ N- ~
M (Ys) = 5= 3050 05



Two approaches

Nt

We want f := — 27:1

N Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)
» Choose “calibration weights” w; » Choose E [y[x, 0] = m(0Tx),
using only the regressors x choose prior P(0|X)P(X)
(e.g. raking weights) (e.g. Hierarchical logistic regression)
N N N
» Take N'WGT(YS) = NLS Zi:s1 WiYi » Take Yj = IE73(6‘\Survey data) [y‘xj] and

~ N- ~
M (Ys) = 5= 3050 05

» Dependence on y; is clear » Dependence on y; very complicated
(Typically via MCMC draws from
‘P(6|Survey data))



Two approaches

Nt

We want f := — 27:1

N Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)
» Choose “calibration weights” w; » Choose E [y[x, 0] = m(0Tx),
using only the regressors x choose prior P(0|X)P(X)
(e.g. raking weights) (e.g. Hierarchical logistic regression)
N N N
» Take N'WGT(YS) = NLS Zi:s1 WiYi » Take Yj = IE73(6‘|Survey data) [y‘xj] and

~ N- ~
AMP(Ys) = w250 0

» Dependence on y; is clear » Dependence on y; very complicated
(Typically via MCMC draws from
‘P(6|Survey data))
» Weights give interpretable diagnostics: » Black box
 Frequentist variability
* Regressor balance

» Partial pooling



Two approaches

Nt

We want f := — 27:1

N Y5, but don’t observe target y;. Let Ys = {y1,...,yng }-

+ Assume p(y|x) is the same in both populations,
* But the distribution of x may be different in the survey and target.

Calibration weighting Bayesian hierarchical modeling (MrP)
» Choose “calibration weights” w; » Choose E [y[x, 0] = m(0Tx),
using only the regressors x choose prior P(0|X)P(X)
(e.g. raking weights) (e.g. Hierarchical logistic regression)
N N N
» Take N'WGT(YS) = NLS Zi:s1 WiYi » Take Yj = IE73(6‘|Survey data) [y‘xj] and

~ N- ~
AMP(Ys) = w250 0

» Dependence on y; is clear » Dependence on y; very complicated
(Typically via MCMC draws from
‘P(6|Survey data))

» Weights give interpretable diagnostics: » Black box

* Frequentist variability < Today, we’ll open the box and provide

* Regressor balance MrP analogues of all these diagnostics

» Partial pooling



Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a weighting estimator when ¢ is computed with OLS:
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Most existing literature on comparing weighting and MrP focus on such linear models. 2

But what if you use a non-linear link function? Or a hierarchical model?

“It would also be desirable to use nonlinear methods ... but then it would seem difficult
to construct even approximately equivalent weights. Weighting and fully nonlinear
models would seem to be completely incompatible methods.” — (Gelman 2007a)

2For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).
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Logistic regression is generally nonlinear

« Suppose the model is m (xT0) = Logistic(xT0), with MLE 6.
The map from Yg — m(x]T.é) is typically nonlinear.
Example: z; ~ Unif[—0.5,0.5], y; i Binomial(1/2). Let §;(6) = y; + 0l (z; > 0.2).
The path 6 — Ys () is well-defined even when v is supposed to be binary!

For OLS, § — 3(6)a is linear. For logistic regression § — m(é(é):cj) is non-linear.
Predictions at x = -0.1
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Figure 1: Simulated path through the space of responses 7



Approximately equivalent weights for (some) logistic regression MrP

« Suppose the model is m (xT0) = Logistic(xT0), with MLE 6.
. o -
s MrPis pMP(Ys) = VL: > m(xg0).
The map from Ys — m(x}'é) is typically nonlinear.

But some sample averages of m(x;é) can be approximately linear.
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« Suppose the model is m (xT8) = Logistic(xT6), with MLE 6.

- MrPis iMP(Ys) = g 52770 m(x16).

Example
Pr(x)

Suppose 7% 6

=~ aTx for some «. Then MrP is a approximately a weighting estimator.

Np Ng

: 1 A 1
~MrP _ TH) — Mrp
B (Ys) = — Z m(xjf) = — » w; " y; + Small error
Nr 7= Ns =1 Ye
Pr(x)

But what are the weights? We don’t observe so can’t estimate « directly.

Ps(x)’
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« Suppose the model is m (xT6) = Logistic(xT6), with MLE 6.
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Example
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=1 Ns = o
Key idea (informal)

2aM™® (vs)
s,

1f pM™P(Ys) is approximately linear, then® wM™® ~ Ng o

MrP

Note: The derivatives w;"™ now have two potentially distinct interpretations:

+ Equivalent weights: A characterization of Ys > M (Ys) for diagnostics
« Implicit weights: An estimate of Pr(x)/Ps(x)

3For MLEs, 4(1/&) is given by the implicit function theorem. (Krantz and Parks 2012; G., Stephenson, et al. 2019)



Local weights for nonlinear hierarchical logistic regression MrP

+ Suppose the model is m (xT0) = Logistic(xT6).
+ Set a hierarchical prior P(0|X)P(X), use MCMC to draw from P(0|Survey data).
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* MiPis NMrP(YS) = NLT j:Tl EP(G\Suwey data) {’IYL(XIQ)] .

No reason to think Ys — iM™®(Ys) is even approximately globally linear.

“4Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.
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Can estimate without rerunning MCMC!

The derivatives erP again have two potentially distinct interpretations:

* Locally equivalent weights: A characterization of Y5 +— M (Ys) for diagnostics

* Locally implicit weights: An estimate of Pr(x)/Pg(x)

This talk will focus only on locally equivalent weights. (Implicit weights is ongoing work!)

“4Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.



Locally equivalent weights for hierarchical logistic regression MrP

+ Suppose the model is m (xT0) = Logistic(xT6).
+ Set a hierarchical prior P(0|X)P(X), use MCMC to draw from P(0|Survey data).

PN N
* MiPis HMrP(YS) = ﬁ Zj:Tl EP(G\Suwey data) {’IYL(XIQ)] .

MrP locally equivalent weights (MrPlew)

For new data Y, form a MrP locally equivalent weighting:

Ng
M (Ys) ~ pM™® (Ys) + Y wi™ (5 — i)
=

Our task is to rigorously show that even such local weights can be meaningfully used
diagnostically in the same ways we use global weights.



Real Data: Marital Name Change Survey

Analysis of changing names after marriage®.

» Target population: ACS survey of US population 2017-2022
 Survey population: Marital Name Change Survey (from Twitter)
» Respose: Did the female partner keep their name after marriage?
« For regressors, use bins of age, education, state, and decade married.
MrP computed with brms (Biirkner 2017):
kept_name ~ (1 | age_group) + (1 | educ_group) + (1 | state_name) + (1 | decade_married)

CW used raking on coarsened regressor marginals (survey: :calibrate from Lumley (2024))
Ng = 4,364 N7 = 4,085,282
138
Uncorrected survey mean: —— ; = 0.462
y Ng ; Yi

Raking: 2"°T(Ys) = 0.263
MrP:  MP(Ys) = 0.288 (Post. sd = 0.0169)

5Based on Alexander (2019), Cohen (2019), and Ruggles et al. (2024).
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6See G. and Broderick (2024). For weighting variances, see, e.g. , Deville, Sérndal, and Sautory (1993) and Fuller (2011). 13



The weights can look very different!

The weights can look very different! Does this mean anything?

Yes: The “spread” relates to frequentist variance just as in weighting estimators.
This is essentially a corollary of our earlier work on the Bayesian infinitesimal jackknife.®

What about covariate balance?
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Figure 2: Weight comparison for the Name Change dataset

6See G. and Broderick (2024). For weighting variances, see, e.g. , Deville, Sérndal, and Sautory (1993) and Fuller (2011). 13



Introduction to covariate balance: What are we weighting for?’

Np Ng
1
Target average response = N E yj e E w;y; = Weighted survey average response
T S :
j=1 i=1

We can’t check this, because we don’t observe ;.

7Pun borrowed from Solon, Haider, and Wooldridge (2015)



Introduction to covariate balance: What are we weighting for?’

Nrp 1 Ns
Z Yj R — Z w;y; = Weighted survey average response
Ns i

Target average response = ——
Nt =

We can’t check this, because we don’t observe y;. But we can check whether:

Np Ng
1 X check 1 Wi
— § i = E iXi
Nt = Ng =

Weights that pass this check satisfy “covariate balance” for x.

7Pun borrowed from Solon, Haider, and Wooldridge (2015)



Introduction to covariate balance: What are we weighting for?’

Np Ng
1
Target average response = N E yj e E w;y; = Weighted survey average response
T S :
j=1 i=1

We can’t check this, because we don’t observe y;. But we can check whether:

Np Ng
1 X check 1 Wi
— § i = E iXi
Nt = Ng =

Weights that pass this check satisfy “covariate balance” for x.

You can check covariate balance for any weighting estimator, and any function f(x).

Recall that raking calibration weights aim to exactly balance some set of regressors.

7Pun borrowed from Solon, Haider, and Wooldridge (2015)



Balance checks as local sensitivity

One reason to balance f(x) is because we think E [y|x] might plausibly vary o< f(x), and want
to check whether our estimator can capture this variability.

Key idea: Define a data perturbation that captures this intuition.



Balance checks as local sensitivity

One reason to balance f(x) is because we think E [y|x] might plausibly vary o< f(x), and want
to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (informal)

Pick a small 6 > 0 and an f(-). Define a new response variable § such that
E[ghx] = E [y}x] +6f(x).
We know the change this is supposed to induce in the target population.

Covariate balance checks whether our estimators produce the same change.



Balance checks as local sensitivity

One reason to balance f(x) is because we think E [y|x] might plausibly vary o< f(x), and want
to check whether our estimator can capture this variability.

Balance-informed sensitivity check (BISC) (formal)

Pick a small 6 > 0 and an f(-). Define a new response variable § such that
E[ghx] = E [y}x] +6f(x).

We know the expected change this perturbation produces in the target distribution:

1 Mz 1 Nz
E[u(@) — py)x = No D (EfGxe] —E [ylxp]) = Ny D fx)
j=1 g=1

Then, check whether your estimator /i (-) produces the same change for observed Ys,Ys:

ek o 1 A

o N check _

pYs)—n(Ys) = ONfTZf(Xj)-
S— i

Replace weighted averages J=u

with changes in an estimator



Balance checks as local sensitivity

When /i (-) = gWOT(+), BISC recovers the standard covariate balance check.

WC T WCT 1 o 1 i
VT (Vs) — VT (Ys) = — wzyz - — ) wiyi
Ns § Ns i
Replace weighted averages -
with changes in an estimator
= sz yL+fX7, szyL
1 Ng
= —> wif(x)
S i1

“‘Tké—Zf (x))-

;*l

We will study /i(-) = aM™P(.).



BISC for MrP

Suppose I have g such that E [g|x] = E [y|x] + 6 f(x).
Now I need to evaluate gM™P (Yg) — M (V).
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Suppose I have g such that E [g|x] = E [y|x] + 6 f(x).
Now I need to evaluate gM™P (Yg) — M (V).

Problem: ™M™ (.) is computed with MCMC.

* Each MCMC run typically takes hours, and
+ MCMC output is noisy, and iM™® (Ys) — iM™®P(Ys) may be small.



BISC for MrP

Suppose I have g such that E [g|x] = E [y|x] + 6 f(x).
Now I need to evaluate gM™P (Yg) — M (V).

Problem: ™M™ (.) is computed with MCMC.

* Each MCMC run typically takes hours, and
+ MCMC output is noisy, and iM™® (Ys) — iM™®P(Ys) may be small.

Solution: Use our local approximation, MrPlew!

Balance informed sensitivity check with MrPlew:

For a wide set of judiciously chosen f(-), check
e
Ns - Z w™ (5 — yi)

Z Wl f(x;) R 6— Z £(x5)-

/*l

X

MNP (Ys) — aM™P(Ys)

ZZ

‘What you actually check



Generating y

» We have defined BISC in terms of § such that E [g|x] = E [y|x] + § f(x)
+ We have approximated ;M™® (Yg) — aM®P (Ys) for g ~ y

How to get such a §? Recall y is binary!



Generating y

» We have defined BISC in terms of § such that E [g|x] = E [y|x] + § f(x)
+ We have approximated ;M™® (Yg) — aM®P (Ys) for g ~ y

How to get such a §? Recall y is binary! Two solutions, with their own pros and cons:

Option 1: Force g to be binary. Option 2: Allow 7 to take generic values.



Generating y

» We have defined BISC in terms of § such that E [g|x] = E [y|x] + § f(x)
+ We have approximated ;M™® (Yg) — aM®P (Ys) for g ~ y

How to get such a §? Recall y is binary! Two solutions, with their own pros and cons:
Option 1: Force g to be binary. Option 2: Allow 7 to take generic values.

1. Make some guess m(x) ~ E [y|x]

» E.g. Posterior mean, or

+ Shrunken posterior mean, or

» Some values that gives the same
posterior

. Take u; ¢ Unif(0, 1)
. Assume y; = I (u; < m(x;))
. Draw uy, |yn

. Set g =T (us < (x;) + 0x;)

A wWN



Generating y

» We have defined BISC in terms of § such that E [g|x] = E [y|x] + § f(x)
+ We have approximated ;M™® (Yg) — aM®P (Ys) for g ~ y

How to get such a §? Recall y is binary! Two solutions, with their own pros and cons:

A wWN

Option 1: Force g to be binary. Option 2: Allow 7 to take generic values.

. Make some guess m(x) ~ E [y|x]

» E.g. Posterior mean, or

+ Shrunken posterior mean, or

» Some values that gives the same
posterior

A W N =

. Take u; ¢ Unif(0, 1)
. Assume y; = I (u; < m(x;))
. Draw uy, |yn

. Set g =T (us < (x;) + 0x;)

. Set§; = y; + 6f(xi).
. Then you’re done.
. There is nothing else to do.

. This space deliberately left blank.



Generating y

» We have defined BISC in terms of § such that E [g|x] = E [y|x] + § f(x)
+ We have approximated ;M™® (Yg) — aM®P (Ys) for g ~ y

How to get such a §? Recall y is binary! Two solutions, with their own pros and cons:

Option 1: Force g to be binary. Option 2: Allow 7 to take generic values.
1. Make some guess m(x) ~ E [y|x]
» E.g. Posterior mean, or
+ Shrunken posterior mean, or
» Some values that gives the same
posterior

. Set§; = y; + 6f(xi).
. Then you’re done.

. There is nothing else to do.

A W N =

Take u; (Y Unif(0, 1) . This space deliberately left blank.

2.
3. Assume y; = I (u; < m(x;))
4. Draw un|yn

5.

Set §; = I (u; < 1(x;) + 0%;)

Pros and cons: Pros and cons:
* Realistic * Not realistic
« Have to pick 7 (x) * No additional assumptions
. }75 — Y5 not infinitesimally small . 375 — Ys may be infinitesimally small

* Use for checks & experiments * Use for theory 18



When is the local approximation accurate?

BISC Theorem: (sketch)

Take §; = y; + 0.f(x:).

We state conditions for Bayesian hierarchical logistic regression under which

Ng
NP (Vs) = fMP (Ys) = 6 wy™ f(x;)| = Small
=1

8 F can be any Donsker class of measurable functions with uniformly bounded E [x f (x)] .
9G. and Broderick 2024; Kasprzak, G., and Broderick 2025.
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BISC Theorem: (sketch)

Take §; = y; + 0.f(x:).

We state conditions for Bayesian hierarchical logistic regression under which

Ng

AMP (V) — AP (Ys) — 83w f(x)| = O(6)
=

8 F can be any Donsker class of measurable functions with uniformly bounded E [x f (x)] .
9G. and Broderick 2024; Kasprzak, G., and Broderick 2025.
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Take §; = y; + 0.f(x:).

We state conditions for Bayesian hierarchical logistic regression under which

Ng
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BISC Theorem: (sketch)
Take §; = y; + 0.f(x:).

We state conditions for Bayesian hierarchical logistic regression under which

Ng
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€ i=1
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When is the local approximation accurate?

BISC Theorem: (sketch)
Take §; = y; + 0.f(x:).

We state conditions for Bayesian hierarchical logistic regression under which

Ng
i MP(Ys) — iMP(Ys) — 6> wi™ f(x;)| = O(6%) as N — oo
€ i=1

...for a very broad class of F. 8

Uniformity justifies searching for “imbalanced” f.

The uniformity result builds on our earlier work on uniform and finite—sample error bounds for
Bernstein—von Mises theorem-like results®.

8 F can be any Donsker class of measurable functions with uniformly bounded E [x f (x)] .
9G. and Broderick 2024; Kasprzak, G., and Broderick 2025.



Covariate balance for primary effects
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Figure 3: Imbalance plot for primary effects in the Name Change dataset
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Covariate balance for interaction effects

married 1999 x age 45
married 1999 x age 40
married 1989 x south 5
married 1989 x age 50 4
married 1989 x age 40
married 1989 x >BA 4
age 60+ x >BA-

age 35 x >BA

>BA x south 4

---> married 2009+ x >BA

Method

[ vre

. Raking

rrr||-

—

Imbalance (% of MrP esnmate)

Figure 4: Imbalance plot for select interaction effects in the Name Change dataset
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Predictions

0.29)

(Recall MrP
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Figure 5: Predictions on binary data for the Name Change dataset
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Predictions and actual MCMC results

c
© p
g 0.00 S Method
5 & —— Target
TN
So - MRP
QI .
Q — Rakin
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o=
£
c
© c — Actual
(=2
5 = = Prediction
Rt
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0.0 0.1 0.2 0.3

19}

Figure 6: Predictions and refit on binary data for the Name Change dataset
Running ten MCMC refits: 10 hours Computing approximate weights: 16 seconds
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Partial Pooling
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By applying the same idea to subsets of the target population,
you can measure MrP partial pooling.
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south 4

northeast -

midwest 4

midwest northeast south west
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Proportion of total weight

0.00
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. "

Figure 7: Region partial pooling for the Name Change dataset
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Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Ys.
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Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Ys.

But the high level idea can be extended much more widely:

1. Assume your initial model was accurate
2. Select some perturbation your model should be able to capture
3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong
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Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Ys.

But the high level idea can be extended much more widely:

1. Assume your initial model was accurate
2. Select some perturbation your model should be able to capture
3. Use local sensitivity to detect whether the change is what you expect

4. If the change is not what you expect, either (1) or (2) was wrong

Checks of this form give generalized versions of many standard linear model diagnostics:

* Local “Fisher consistency” checks
» Checks for exogeneity of residuals (even without residuals)

. . . . check . .
* Checks for whether inverse Fisher information =" score covariance (even without scores)



Student contributions and ongoing work:

+ Vladimir Palmin is working on extending MrPlew to lme4

» Sequoia Andrade is working on generalizing to other local sensitivity checks

* Lucas Schwengber is working on novel flow—based techniques for local sensitivity

* (Currently recruiting!) Doubly—robust Bayesian MrP (the “implicit weights” version)

g

Vladimir Palmin Sequoia Andrade Lucas Schwengber

Preprint and R package coming soon! 4
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Frequentist variance estimation

Let Var (-) denote the sample variance.
Calibration weighting standard errors sketch: 1

If we have V6T (Ys) = Nis vazsl w;y; and a consistent residual estimate £;, then

Var (wie;) ~ Var ( NSﬂWGT(Yg)) .

10F.g. , Deville, Sirndal, and Sautory (1993) and Fuller (2011).
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Frequentist variance estimation

Let Var (-) denote the sample variance.

Calibration weighting standard errors sketch: 1
If we have V6T (Ys) = Nis Zf\]:sl w;y; and a consistent residual estimate £;, then

Var (wie;) ~ Var ( Ns;lWGT(Yg)) .

MrPlew Standard error consistency theorem sketch (Our contribution):!!
For Bayesian hierarchical logictic regression, define &; = y; — Ep(g|survey data) [m(xIG)] .

We state mild conditions under which, as Ng — oo, for some 1~ and variance V/,

V/Ns (iM®(Ys) — poo) — N (0,V)  and

Var (w)™e;) — V.

MrP
i

The use of w™ is analogous to the use of w; for frequentist variance estimation.

198, g | Deville, Sarndal, and Sautory (1993) and Fuller (2011).
This is essentially a corollary of our earlier work on the Bayesian infinitesimal jackknife. (G. and Broderick 2024)



Standard error estimation experiment

Frequentist standard deviation

0.020 4

0.0154

0.0101

0.0054
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Name change dataset

. MrP parametric bootstrap
. MrPlew estimate
. Raking estimate

Figure 8: Frequentist standard deviation estimates
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Standard error est

0.0204
c
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© 0.0154
>
[}
°
E
‘E . MrP parametric bootstrap
@ 0.0104 "
o . MrPlew estimate
g . Raking estimate
c
@
&
® 0.005
w
0.000

Name change dataset

Figure 8: Frequentist standard deviation estimates

Running fifty MCMC parametric bootstraps:  ~ 79 hours

Computing approximate weights: 16 seconds
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Real Data: Lax Philips

Analysis of national support for gay marriage.'?

 Target population: US Census Public Use Microdata Sample 2000
 Survey population: Combined national-level polls from 2004
» Respose: “Do you favor allowing gay and lesbian couples to marry legally?”

« For regressors, use race, gender, age, education, state, region, and continuous statewide
religion and political characteristics, including some analyst—selected interactions.

Survey observations: Ng = 6,341
Target observations (rows): N = 9,694,541

Ng
1
Uncorrected survey mean: e E y; = 0.333
S =1

Raking: fiwet = 0.33
MrP: fipp = 0.337  (Post. sd = 0.039)

12Based on Kastellec, Lax, and Phillips (2010), see also Lax and Phillips (2009).
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Covariate balance for primary effects
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Figure 9: Imbalance plot for primary effects in the Gay Marriage dataset

33



Covariate balance for interaction effects
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Figure 10: Imbalance plot for select interaction effects in the Gay Marriage dataset
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Predictions

0.34)

Change in target population mean
(Recall MrP
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Figure 11: Predictions on binary data for the Gay Marriage dataset



Predictions and actual MCMC results
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Figure 12: Predictions and refit on binary data for the Gay Marriage dataset
Running ten MCMC refits: 11 hours Computing approximate weights: 23 seconds
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Consistency / y=0Tx+¢
Unbiased G=(0+86Tx+e

0(5) =" 0) + 0
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Some generalized diagnostics

Regression

Consistency /
Unbiased

()

Yy =

G=0+8)Tx+e

check

0Tx + ¢

0(y) + 0

General models

y = f(x,¢,0)
§=f(x¢e,0+90)

0(5) = b(y) + 6
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Some generalized diagnostics

Regression General models
Consistency / y=0Tx+¢ y = f(x,¢,0)
Unbiased =(0+06)Tx+e 7= f(x,6,0+9)
6(g) =" b(y) + 6 0(5) =" b(y) + 6
Exogonous y=0Tx+¢
residuals G=ytez
check 5

0(m) = o(y)

37



Some generalized diagnostics

Regression General models
Consistency / y=0Tx+¢ y = f(x,¢,0)
Unbiased =(0+06)Tx+e 7= f(x,6,0+9)
05) =" () + 5 0(G) =" 0(w) + 9
Exogonous y=0Tx+¢ y ~ P(y|x) and P(x) = w
residuals G=ytez W= w —+ 6z

check 5

0(m) = o(y)

check

0(@) =" 6(w)
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Some generalized diagnostics

Regression General models
Consistency / y=0Tx+¢ y = f(x,¢,0)
Unbiased =(0+06)Tx+e 7= f(x,6,0+9)
6(g) =" b(y) + 6 0(5) =" b(y) + 6
Exogonous y=0Tx+¢ y ~ P(y|x) and P(x) = w
residuals G=y+ez W =w+0z
0(5) =" b(y) (@) " f(w)
Fisher 7 := Fisher information
information

3} := Score covariance

T 1 check

P

37



Some generalized diagnostics

General models

Regression
Consistency / y=0Tx+¢ y = f(x,¢,0)
Unbiased =(0+06)Tx+e 7= f(x,¢,0+9)
6(g) =" b(y) + 6 0(5) =" b(y) + 6
Exogonous y=0Tx+¢ y ~ P(ylx) and P(x) = w
residuals J=y+ez w=w+0dz
0(5) =" b(y) (@) " f(w)
Fisher T := Fisher information y ~ P(y|0)
information 3} := Score covariance § ~ Importance sample y
_1 check 6+6
T =X using w = 773(2/' —i: )
P(yl0)

o(w) = 0(1) + 6 .



Some generalized diagnostics

General models

Regression
Consistency / y=0Tx+¢ y = f(x,¢,0)
Unbiased =(0+06)Tx+e 7= f(x,¢,0+9)
6(g) =" b(y) + 6 0(5) =" b(y) + 6
Exogonous y=0Tx+¢ y ~ P(ylx) and P(x) = w
residuals J=y+ez w=w+0dz
0(5) =" b(y) (@) " f(w)
Fisher T := Fisher information y ~ P(y|0)
information 3} := Score covariance § ~ Importance sample y
_1 check 6+6
T =X using w = 773(2/' —i: )
P(yl0)

o(w) = 0(1) + 6 .



Weights by education for the Name Change analysis
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