Are confidence intervals inference?

Suppose we have a scalar parameter 0, a random variable X with unknown distribution

P (-), and an interval-valued function x — C(x) such that, no matter the distribution
of X, we know that

P(¢ =1)=0.9 where % :=1(0 € C(X)) (% isfor “cover”)

The interval C(X) is a valid confidence interval for 6. This means that if we act as if
6 € C(X), we will be wrong at most 10% of the time.
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Not always! Recall, for example, how we can construct silly confidence intervals.
Augment the data with a draw Z ~ Unif(0,1), and let
(X) = (—o00, 00) when Z < 0.9
[1337,1337]  otherwise )

Obviously, no matter what the generating process, P (4 = 1) = 0.9, but it is absurd to
assert that we are 90% confident that & = 1337 because we observed Z = 0.95.
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How can we characterize generally and precisely what went wrong?
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| argue that potential answers may be found in fiducial inference.

Here, | will follow lan Hacking's book, The Logic of Statisical Inference.
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Fiducial inference for confidence intervals

Assumption 1: The logic of support.
Assumption 2: The frequency principle.
Assumption 3: Irrelevance.

Confidence intervals are valid inference when
P(¥=1)=09 = B(¥=1X=x)=009.

The above three assumptions are sufficient.

Proof:

B(#=1X=x)=B(¢=1) Irrelevance
=P(¥=1) The frequency principle
=P (0 € C(X))=0.9. Construction of C(-)



The pathological example is caught

Clearly enough, the irrelevance assumption is where things can go wrong. Let's look at
our pathological example.

) (=00, 00) when z < 0.9
x) = .
[1337,1337]  otherwise

Irrelevance: The precise value of the data X = x is not subjectively informative about
whether 6 € C(x). That is,

B(0 € C(x)IX =x)=B(0 € C(x)).

Our pathological example fails the principle of irrelevance, since knowing z > 0.9 is
very informative about whether 6 € C(x).
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I think this is very exciting.



