
Inductive Logic review

Recall Hume: We have observed the sun rise every day our whole lives. How are we

justified in believing it will rise again tomorrow?

Hume (and many other logicians) proposes a dichotomy between

� Deduction

� Certain

� Mathematical

� Conclusions contain no more information than the premises

� Induction

� Uncertain

� Conjectural

� Conclusions contain amplify or add to the premises

At least two factions emerge in response to Hume:

� Falsificationists (e.g. Popper 1963): We do not need inductive logic

� Bayesians (e.g. Carnap 1966): Bayesian probability formalizes inductive logic

Today I will describe a fascinating skirmish in the war between the falsificationsists

and Bayesians: the Popper-Miller theorem.
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Running Example

Coin TT

Coin HT

Coin HH

Side 1 Side 2
TT1

HT1

HH1

TT2

HT2

HH2

We observe heads = HT1 ∨ HH1 ∨ HH2

We chose the HH coin = HH1 ∨ HH2

Recall that the truth × lies in exactly one cell.

Here is a running example for this presentation. Suppose a bag contains three coins:

one regular coin (HT), one with both faces tails (TT), and one with both faces heads

(HH). The coin is flipped, and either the first or second side comes up.

Exactly one possible outcome of coin × side occurs; call this the “truth.”

Recall logical notation:

� ∨: Disjunction (logical or)

� ∧: Conjunction (logical and)

� ¬: Negation (logical not)

2



Running Example

Coin TT

Coin HT

Coin HH

Side 1 Side 2
TT1

HT1

HH1

TT2

HT2

HH2

We observe heads = HT1 ∨ HH1 ∨ HH2

We chose the HH coin = HH1 ∨ HH2

Recall that the truth × lies in exactly one cell.

Here is a running example for this presentation. Suppose a bag contains three coins:

one regular coin (HT), one with both faces tails (TT), and one with both faces heads

(HH). The coin is flipped, and either the first or second side comes up.

Exactly one possible outcome of coin × side occurs; call this the “truth.”

Recall logical notation:

� ∨: Disjunction (logical or)

� ∧: Conjunction (logical and)

� ¬: Negation (logical not)

2



Running Example

Coin TT

Coin HT

Coin HH

Side 1 Side 2
TT1

HT1

HH1

TT2

HT2

HH2

We observe heads = HT1 ∨ HH1 ∨ HH2

We chose the HH coin = HH1 ∨ HH2

Recall that the truth × lies in exactly one cell.

Let us define a “hypothesis” h and evidence e:

� Hypothesis h: We selected the HH coin (all future flips will be H)

� Evidence e: We observed heads.

How much does e support h? This is an inductive question! Call the answer s(h|e).

Bayes’ rule gives a potential answer:

s(h|e) = p(h|e)− p(h).

In this case,

s(h|e) =
2

3
−

1

3
=

1

3
> 0.

This is positive, so we might say that e supports h. Have we solved induction?
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The Popper-Miller theorem

Coin TT

Coin HT

Coin HH

Side 1 Side 2
TT1

HT1

HH1

TT2

HT2

HH2

We observe heads = HT1 ∨ HH1 ∨ HH2

We chose the HH coin = HH1 ∨ HH2

Recall that the truth × lies in exactly one cell.

Popper and Miller say no (Popper and Miller 1983).

The first step of their argument is to break h into deductive and inductive components.

1. e follows deductively from h, since h ⊆ e.

2. But h does not follow deductively from e, because e * h.

3. Does some “component” of h follow from e?

4. The strongest proposition implied by e and containing h is hD := h ∨ e.

5. Can we write h = hD ∧ S for some set?

6. The weakest such propostion is hI := h ∨ ¬e.

So we can write h = hD ∧ hI . Popper and Miller call:

� hD : The “deductive” component of h

� hI : The “inductive” component of h
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The Popper-Miller theorem

Coin TT

Coin HT

Coin HH

Side 1 Side 2
TT1

HT1

HH1

TT2

HT2

HH2

e = We observe heads

h = We chose the HH coin

hD = Inductive component = h ∨ e = e

hI = Inductive component = h ∨ ¬e

We can write h = hD ∧ hI .

Note also that h ⊆ e so hD = e.

What is the support for these two components? Basic calculations show that

s(hD |e) = p(hD |e)− p(hD) = 1− p(e)

s(hI |e) = p(hI |e)− p(hI ) = p(h|e)− (p(h) + 1− p(e))

⇒ s(h|e) = p(h|e)− p(h) = s(hD |e) + s(hI |e)

So the support of h is the sum of the support for its components.

Next, by Bayes’ rule,

s(h|e) =
p(h ∧ e)

p(e)
− p(h) =

p(h)

p(e)
− p(h) =

p(h)

p(e)
(1− p(e)) < 1− p(e) = s(hD |e).

So h is supported less than its deterministic component. Also sensible. But then:

s(hI |e) = s(h|e)− s(hD |e) < 0.

⇒ The inductive component is counter-supported by the evidence.
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The Popper-Miller theorem

To summarize Popper-Miller’s argument:

1. We can write h = hD ∧ hI where hD follows deductively from e.

2. We have chosen hI so that s(h|e) = s(hD |e) + s(hI |e).

3. It is reasonable to call hD and hI the deductive and inductive components of h.

4. But s(hD |e) > s(h|e), so s(hI |e) < 0.

That is, h is only supported by e because it depends partly, deductively, on e.

Any non-deductive dependence of h on e is actually counter-supported by the evidence.

The fact that we appear to be doing induction is a mirage.

“This result is completely devastating to the inductive interpretation of the

calculus of probability. All probabilistic support is purely deductive: that part

of a hypothesis that is not deductively entailed by the evidence is always

strongly countersupported by the evidence — the more strongly the more the

evidence asserts.”

(Popper and Miller 1983)
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The discussion continues

This idea generated a lot of discussion, and a detailed follow-up by Popper and Miller.

Some notable references:

� Levi and Jeffrey 1984

� Redhead 1985

� Levi 1986

� Good 1990

� Popper and Miller 1987

To me, this result has the feel of a paradox. Though maybe not very practically

relevant, by taking it seriously one is forced to think very carefully and potentially

identify unarticulated assumptions or unjustified conculsions.

What do you think?
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