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High—dimensional Bayesian causal inference [Ben-Michael et al., 2023]
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FIG. 1. Anmual homicide rate per 100,000, 1997 through 2016. The dotted line is 2006, the year the APPS
program was launched. (a) California and the rest of the United States. (b) California and Synthetic California,
matched based on the pre-intervention years 1997-2006, de-meaned.

In 2006, California instituted the “Armed and Prohibited Persons System” (APPS) system to
actively reclaim guns from prohibited carriers. Did the APPS reduce homicides?
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matched based on the pre-intervention years 1997-2006, de-meaned.

In 2006, California instituted the “Armed and Prohibited Persons System” (APPS) system to
actively reclaim guns from prohibited carriers. Did the APPS reduce homicides?

Bayesian techniques can model counterfactuals [Oganisian and Roy, 2021, Li et al., 2023].

By modeling control-condition gun violence in all fifty states as a Gaussian process, we can
produce a Bayesian belief about a “counterfactual California” [Ben-Michael et al., 2023].
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¢ := f(0) = Counterfactual effect of AAPS in CA
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2 = Data (homicide counts for 50 states and 19 years)
0 = Parameters (GP loadings and values, hyperparameters)
7(0) = Prior (complex but closed form density)
m(z|0) = Poisson likelihood given GP values

¢ := f(0) = Counterfactual effect of AAPS in CA

Problem: We only really care about 7 (¢|zops), a scalar posterior.
But 6 is very high dimensional (> 50 x 19 x K for K independent GP components)!
Almost all standard MCMC and VI techniques estimate the full 7w (0|x) to get 7(¢|xgbs)-

= High complexity, high computational cost, slow model-building iteration. Hard to do good
Bayesian causal inference! [Oganisian and Roy, 2021, Li et al., 2023]
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View low—dimensional marginal estimation is a likelihood—free inference problem:

7r(¢7 wobs) = / 7r(9¢zobs)d€

JO:f(0)=0

intractable

» Contrast two very different existing techniques:

» Approximate Bayesian computation (ABC)
» Neural ratio estimation (NRE)
« In practice, each depends on an arbitrary threshold parameter...in opposite ways.

* Our contribution: NRE-ABC, a synthesis that stands to provide the best of both methods.
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+ The ability to simulate ¢, x ~ 7(¢, x):
1. Draw 0 ~ 7(6) (high—-dimensional)
2. Draw & ~ 7(x|0)
3. Set ¢ = f(60) (scalar-valued)
4. Only keep (¢, ) (discard 6)

+ A thresholded “data similarity kernel,” Kc(x) = I (||z — zobs|| < €)
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An ABC algorithm: [Tavaré et al., 1997, Beaumont et al., 2002]

K3

Draw (¢n, Tn) id (¢, x), and keep only if Ke(zyn) = 1.

We use ¢y, to approximate Tapc;e (¢|Tobs) ~ WXBC;F((D‘IO},S) o f7r(<;57 z)Ke(x)dz.
If threhsolding only keeps @ = Zps, then 7. (d]Zobs) = T(P|Tobs)-

But in practice, 77X, (@|Tobs) 7 7(P|Tobs) for any nonzero e and practical norm ||-||.



Effect of thresholding on ABC
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Method 2: Neural ratio estimation (NRE)

A NRE algorithm: [Cranmer et al., 2016, Hermans et al., 2020]
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Y

Why does this make sense?

The optimal odds ratio is -

(6, 2) = T@EW=DP@=Y) _ n(92) _ x(ole) t

= m(¢zly=0)P(y=0) — w(P)m(z) — w(d)

Therefore m{gg (D|Tobs) = 7(P|Tobs)-
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Problem: We have found that typically 7 (¢, zohs) 7 7% (0, Zhs ), €ven for “easy” posteriors.
Why? Educated conjecture: ML algorithms come with marginal guarantees!
If the prior 7(0) is dispersed, then 7r(x) is dispersed.

Most training data look very little like s, and the classifier is trying to do well on all of them.

Idea: Use the ABC simulations to learn an odds ratio 7' (¢, ).
This should focus the classifier on (¢, z) that matter for computing 7 (| ops)-

Call the corresponding estimator iz . . (¢]Zobs)-

Problem: Censoring the training data means the classifier learns the wrong odds ratio. The
smaller ¢, the worse it is.



Thresholding has different effects

Posterior
approximation error

= = = NRE Ideal
NRE in practice

il Log ABC threshold € +o0



Thresholding has different effects

Posterior
approximation error

= = = ABC Ideal

= ABC in practice

= = = NRE Ideal
NRE in practice

- -
= = = =

il Log ABC threshold € +oo



ABC-NRE

We propose the NRE-ABC estimator:

Estimate from ABC
TNRE-ABC;e (@] Tobs) X TABC;e (P|Tobs) 7e (&, Zobs)
e —

Classifier trained on ABC samples



ABC-NRE

We propose the NRE-ABC estimator:

Estimate from ABC
ANRE-ABG; e (@|Zobs) o€ TABC;e (Pl Tobs) Te (& Zobs)
——
Classifier trained on ABC samples
Our one theoretical result:

When the classifier is trained on the ABC samples, we show that

TNRE-ABC; ¢ (@|Tobs) = (| Zos), irrespective of e.



ABC-NRE

We propose the NRE-ABC estimator:

Estimate from ABC
ANRE-ABC;e (@Tobs) X TABC;e (BlTabs) e (D, Zobs)
N——
Classifier trained on ABC samples
Our one theoretical result:

When the classifier is trained on the ABC samples, we show that

ﬂ&REiABC;‘ (@] zops) = m(p|xobs), irrespective of e.

Our combined estimator can safely use intermediate values of e for which both
ﬂ;Bc;f (¢|zops) and ”ﬁRE;e (¢|zops) are biased, but for which

WIGRE—ABC;;((ZS‘IOI)S) = T(B|Tobs)-



ABC-NRE

We propose the NRE-ABC estimator:

Estimate from ABC
TNRE-ABC;e (@] Tobs) X TABC;e (P|Tobs) 7e (&, Zobs)
N——
Classifier trained on ABC samples
Our one theoretical result:

When the classifier is trained on the ABC samples, we show that

TNRE-ABC; ¢ (@|Tobs) = (| Zos), irrespective of e.

Our combined estimator can safely use intermediate values of e for which both
ﬂ;Bc;f (¢|zops) and ”ﬁRE;e (¢|zops) are biased, but for which

7"'KJRFfABC;F(<15‘575c31)s) = T(B|Tobs)-

We can choose € (and ||-||) to balance computational costs from simulation and classifier
training, without worrying about finding a “sweet spot.”
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Posterior estimates
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These plots show simulation results for the model x,, ud N (u, 1) with N = 5 data points.

We used the prior 11 ~ N (0,202) and a true ;1o = 40.



ABC-NRE

This is early work! There is a lot left to do.

» Run on higher—dimensional and real-world problems (ongoing)
* Compare with other truncation methods [Miller et al., 2021]
» Improve neural net architecture and systematically compare compute cost with MCMC

» Use ML to learn the ABC norm for thresholding
« Diagnostics with simulation—based calibration (SBC) [Talts et al., 2020].

+ Side note: improving the statistical power of SBC was the original motivation for this project!

Arxiv post coming soon!
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