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High–dimensional Bayesian causal inference [Ben-Michael et al., 2023]

In 2006, California instituted the “Armed and Prohibited Persons System” (APPS) system to

actively reclaim guns from prohibited carriers. Did the APPS reduce homicides?

Bayesian techniques can model counterfactuals [Oganisian and Roy, 2021, Li et al., 2023].

By modeling control–condition gun violence in all fifty states as a Gaussian process, we can

produce a Bayesian belief about a “counterfactual California” [Ben-Michael et al., 2023].
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High–dimensional Bayesian causal inference

x = Data (homicide counts for 50 states and 19 years)

θ = Parameters (GP loadings and values, hyperparameters)

π(θ) = Prior (complex but closed form density)

π(x|θ) = Poisson likelihood given GP values

φ := f(θ) = Counterfactual effect of AAPS in CA

Problem: We only really care about π(φ|xobs), a scalar posterior.

But θ is very high dimensional (> 50× 19×K forK independent GP components)!

Almost all standard MCMC and VI techniques estimate the full π(θ|x) to get π(φ|xobs).

⇒ High complexity, high computational cost, slow model–building iteration. Hard to do good

Bayesian causal inference! [Oganisian and Roy, 2021, Li et al., 2023]
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Talk outline

View low–dimensional marginal estimation is a likelihood–free inference problem:

π(φ, xobs) =

∫
θ:f(θ)=φ

π(θ, xobs)dθ︸ ︷︷ ︸
intractable

• Contrast two very different existing techniques:

• Approximate Bayesian computation (ABC)

• Neural ratio estimation (NRE)

• In practice, each depends on an arbitrary threshold parameter...in opposite ways.

• Our contribution: NRE–ABC, a synthesis that stands to provide the best of both methods.
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Method 1: Approximate Bayesian Computation (ABC)

Ingredients for likelihood–free inference:

• Observed data, xobs.

• The ability to simulate φ, x ∼ π(φ, x):

1. Draw θ ∼ π(θ) (high–dimensional)

2. Draw x ∼ π(x|θ)
3. Set φ = f(θ) (scalar–valued)

4. Only keep (φ, x) (discard θ)

• A thresholded “data similarity kernel,”Kε(x) = I (‖x− xobs‖ ≤ ε)

AnABC algorithm: [Tavaré et al., 1997, Beaumont et al., 2002]

Draw (φn, xn)
iid∼ π(φ, x), and keep only ifKε(xn) = 1.

We use φn to approximate π̂ABC;ε(φ|xobs) ≈ π?
ABC;ε(φ|xobs) ∝

∫
π(φ, x)Kε(x)dx.

If threhsolding only keeps x = xobs, then π
?
ABC;ε(φ|xobs) = π(φ|xobs).

But in practice, π?
ABC;ε(φ|xobs) 6= π(φ|xobs) for any nonzero ε and practical norm ‖·‖.
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Effect of thresholding on ABC
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Method 2: Neural ratio estimation (NRE)

ANRE algorithm: [Cranmer et al., 2016, Hermans et al., 2020]

1. Repeat many times:

1.1 Draw θ ∼ π(θ).

1.2 Draw y ∼ Bernoulli(0.5).
1.3 If y = 1:

• Draw x ∼ π(x|θ)
1.4 Else if y = 0:

• Draw θ′ ∼ π(θ′)
• Draw x ∼ π(x|θ′)

1.5 Set φ = f(θ).

1.6 Keep only (φ, x) (discard θ)

2. Train an ML classifier on the samples ((φ, x), y) to learn the odds ratio r̂(φ, x).

Posterior estimator: π̂NRE(φ|xobs) ∝
Known (or easily estimated)︷ ︸︸ ︷

π(φ) r̂(φ, xobs)︸ ︷︷ ︸
Computable from classifier

Why does this make sense?

The optimal odds ratio is

r?(φ, x) =
π(φ,x|y=1)P(y=1)
π(φ,x|y=0)P(y=0)

=
π(φ,x)

π(φ)π(x)
=

π(φ|x)
π(φ)

.

Therefore π?
NRE(φ|xobs) = π(φ|xobs).
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Method 2: Neural ratio estimation (NRE)

Problem: We have found that typically r̂(φ, xobs) 6= r?(φ, xobs), even for “easy” posteriors.

Why? Educated conjecture: ML algorithms come with marginal guarantees!

If the prior π(θ) is dispersed, then π(x) is dispersed.

Most training data look very little like xobs, and the classifier is trying to do well on all of them.

Idea: Use the ABC simulations to learn an odds ratio r̂ε(φ, x).

This should focus the classifier on (φ, x) that matter for computing π(φ|xobs).

Call the corresponding estimator π?
NRE;ε(φ|xobs).

Problem: Censoring the training data means the classifier learns the wrong odds ratio. The

smaller ε, the worse it is.
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Thresholding has different effects
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ABC-NRE

We propose the NRE–ABC estimator:

π̂NRE–ABC;ε(φ|xobs) ∝
Estimate fromABC︷ ︸︸ ︷
π̂ABC;ε(φ|xobs) r̂ε(φ, xobs)︸ ︷︷ ︸

Classifier trained on ABC samples

Our one theoretical result:

When the classifier is trained on the ABC samples, we show that

π?
NRE–ABC;ε(φ|xobs) = π(φ|xobs), irrespective of ε.

Our combined estimator can safely use intermediate values of ε for which both

π?
ABC;ε(φ|xobs) and π?

NRE;ε(φ|xobs) are biased, but for which

π?
NRE–ABC;ε(φ|xobs) = π(φ|xobs).

We can choose ε (and ‖·‖) to balance computational costs from simulation and classifier

training, without worrying about finding a “sweet spot.”
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Univariate normal simulation

These plots show simulation results for the model xn
iid∼ N (µ, 1) withN = 5 data points.

We used the prior µ ∼ N
(
0, 202

)
and a true µ0 = 40.
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ABC-NRE

This is early work! There is a lot left to do.

• Run on higher–dimensional and real–world problems (ongoing)

• Compare with other truncation methods [Miller et al., 2021]

• Improve neural net architecture and systematically compare compute cost with MCMC

• Use ML to learn the ABC norm for thresholding

• Diagnostics with simulation–based calibration (SBC) [Talts et al., 2020].

• Side note: improving the statistical power of SBC was the original motivation for this project!

Arxiv post coming soon!
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