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Dropping data: Mexico Microcredit

Example: Angelucci et al. [2015], a randomized controlled trial study of
the efficacy of microcredit in Mexico based on N =16,560 data points. A
regression was run to estimate the average effect of microcredit.

Original result: Treatment effect statistically insignificant at 95%.

Policy implication: Disinvest in microcredit initiatives.

Data dropping: Can produce both positive and negative statististically
significant results dropping no more than 15 data points (< 0.1%).

Policy implication: Run a higher-powered study (not just larger N).

Cannot find influential subsets by brute force!

We provide a fast, automatic tool to approximately identify the
most influential set of points.
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Outline

Why and when might you care about sensitivity to data dropping?

How do we identify influential sets? When is our method accurate?

(A formalization of the problem and the class of estimators we study.)

Examine real-life examples of analyses: some sensitive, some not.

(The results may defy your intuition.)

What kinds of analyses are sensitive to data dropping?

(Comparison to standard errors, gross errors, and how to mitigate.)

Ryan Giordano (rgiordan@mit.edu) When Can Dropping a Little Data Make a Big Difference? 3 / 24



Dropping data: Motivation

When and why do you care that you can reverse your conclusion by
removing a small proportion of your data?

Not always! But sometimes, surely yes, especially when you want to
generalize to unseen, systematically different populations.

Suppose you have a farm, and want to know whether your average yield
is > 170 bushels per acre. At harvest, you measure 200 bushels per acre.

Scenario one: > 170 bushels per acre means you make a profit.

Don’t care about sensitivity to small subsets.

Scenario two: Want to recommend methods to a distant friend.

Might care about sensitivity to small subsets!

Specifically, often in statistical applications:

Policy population is different from analyzed population,

Small fractions of data are missing not-at-random,

We report a convenient summary (e.g. mean) of a complex effect.
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Formalizing the question.

Example: Least squares

A data point dn has regressors xn
and response yn: dn = (xn, yn).

The estimator θ̂ ∈ RP satisfies:

θ̂ := arg min
θ

1

2

N∑
n=1

(
yn − θT xn

)2

⇔
N∑

n=1

(
yn − θ̂T xn

)
xn = 0.

Make a qualitative decision using:
A particular component: θ̂k

The end of a confidence
interval: θ̂k + 1.96√

N
σ̂(θ̂)

General setup: Z-estimators

We observe N data points
d1, . . . , dN (in any domain).

The estimator θ̂ ∈ RP satisfies:

N∑
n=1

G (θ̂, dn) = 0P .

G (·, dn) is “nice,” RP -valued.
E.g. MLE, MAP, VB, IV &c.

Make a qualitative decision using
φ(θ̂) for a smooth, real-valued φ.

(WLOG try to increase φ(θ̂).)
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Data dropping as data reweighting.

Question: Can we make a big change in φ(θ̂) by dropping bαNc
datapoints, for some small proportion α?

Two big problems:

There are
(

N
bαNc

)
sets to check. (E.g.

(
16,560

15

)
≈ 1.5 · 1051)

Evaluating θ̂ re-solving the estimating equation.
E.g., re-running OLS. (0.001s · 1.5 · 1051 ≈ 4.8 · 1040 years)
Other examples are even harder (VB, machine learning)

Our idea: Smoothly approximate the effect of leaving out points.

We have N data points d1, . . . , dN , a quantity of interest φ(·), and

N∑
n=1

G (θ̂, dn) = 0P

for a weight vector w ∈ RN

.

Original weights: ~1 = (1, . . . , 1) Leave points out by setting their
elements of w to zero.

The map w 7→ φ(θ̂(w)) is well-defined even for continuous weights.
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Taylor series approximation.

10.750.50.250
wn

φ(θ̂(w))

φlin(w)

Slope = ∂φ(θ̂(w))
∂wn

∣∣∣
w=~1

=: ψn

φ(θ̂(~1))

The values Nψn are the empirical influence function [Hampel, 1986].
We call ψn an “influence score.”

We can use ψn to form a Taylor series approximation:

φ(θ̂(w)) ≈ φlin(w) := φ(θ̂(~1)) +
N∑

n=1

ψn(wn − 1)
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Taylor series approximation.

Problem: How much can you change φ(θ̂(w)) dropping bαNc points?
Combinatorially hard by brute force!

Approximate Problem: How much can you change φlin(θ̂(w))
dropping bαNc points? Easy!

φlin(w) := φ(θ̂(~1)) +
N∑

n=1

ψn(wn − 1)

Dropped points have wn − 1 = −1. Kept points have wn − 1 = 0
⇒ The most influential points for φlin(w) have the most negative ψn.

Our procedure: (see rgiordan/zaminfluence on github)

1 Compute your original estimator θ̂(~1).

2 Compute and sort the influence scores ψ(1), . . . , ψ(N).

3 Check if −
∑bαNc

n=1 ψ(n) is large enough to change your conclusions.

How to compute the ψn’s? And how accurate is the approximation?
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How to compute the influence scores?

How can we compute the influence scores ψn = ∂φ(θ̂(w))
∂wn

∣∣∣
w=~1

?

By the chain rule, ψn = ∂φ(θ)
∂θ

∣∣∣
θ̂(~1)

∂θ̂(w)
∂wn

∣∣∣
w=~1

.

Recall that
∑N

n=1 wnG (θ̂(w), dn) = 0P for all w near ~1.

⇒ By the implicit function theorem, we can write ∂θ̂(w)
∂wn

∣∣∣
w=~1

as a

linear system involving G (·, ·) and its derivatives.

⇒ The ψn are automatically computable from θ̂(~1) and software
implementations of G (·, ·) and φ(·) using automatic differentiation.

> import jax
> import jax.numpy as np
> def phi(theta):
> ... computations using np and theta ...
> return value
>
> # Exact gradient of phi (first term in the chain rule above):
> jax.grad(phi)(theta_opt)

See rgiordan/vittles on github.
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How accurate is the approximation?

Checking the approximation for Mexico microcredit.
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How accurate is the approximation?

By conrolling the curvature, we
can control the error in the linear
approximation.

10.750.50.250
wn

φ(θ̂(w))

φlin(w)

Slope = ∂φ(θ̂(w))
∂wn

∣∣∣
w=~1

=: ψn

φ(θ̂(~1))

We provide finite-sample theory [Giordano et al., 2019b] showing that∣∣∣φ(θ̂(w))− φlin(w)
∣∣∣ = O

(∥∥∥ 1
N (w −~1)

∥∥∥2

2

)
= O (α) as α→ 0.

But you don’t need to rely on the theory!

Our method returns which points to drop. Re-running once without
those points provides an exact lower bound on the worst-case sensitivity.
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Selected experimental results.

Original estimate (SE) Refit estimate (SE) Observations dropped

-4.549 (5.879) 7.030 (2.549)* 15 = 0.09%

Table: Microcredit Mexico results (N = 16560) [Angelucci et al., 2015].

Original estimate (SE) Refit estimate (SE) Observations dropped

33.861 (4.468)* -9.416 (3.296)* 986 = 9.37%

Table: Cash transfers results (N = 10518) [Angelucci and De Giorgi, 2009]

Original estimate (SE) Refit estimate (SE) Observations dropped

0.029 (0.005)* -0.009 (0.004)* 224 = 0.96%

Table: Medicaid profit results (N = 23361) [Finkelstein et al., 2012]

A ∗ indicates statistical significance at the 95% level.
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What makes an analysis sensitive? Preliminaries

We are robust to data dropping if, for the ∆ that changes conclusions
and w∗ dropping the bαNc most influential points,

∆ ≥ φlin(w∗)− φ(θ̂(~1))

=: σ̂φŜα ⇔ ∆

σ̂φ
≥ Ŝα.

The “signal” ∆ is the smallest change that reverses your conclusion

The “noise” σ̂2
φ → lim

N→∞
Var(
√
Nφ) (“sandwich” variance estimator)

The “shape” Ŝα → a nonzero constant and is ≤
√
α(1− α)

The signal to noise ratio ∆
σ̂φ

determines robustness to data dropping ...

and sampling variability, but with different thresholds.

Contrast with sampling variability.

A 95% CI is given by φ(θ̂(~1))± 1.96√
N
σ̂φ. We reject φ(θ̂(~1)) + ∆ when

φ(θ̂(~1)) + ∆ ≥ φ(θ̂(~1)) +
1.96√
N
σ̂φ

⇔ ∆

σ̂φ
≥ 1.96√

N.
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≥ Ŝα.

The “signal” ∆ is the smallest change that reverses your conclusion

The “noise” σ̂2
φ → lim

N→∞
Var(
√
Nφ) (“sandwich” variance estimator)
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The “shape” Ŝα → a nonzero constant and is ≤
√
α(1− α)

The signal to noise ratio ∆
σ̂φ

determines robustness to data dropping

...

and sampling variability, but with different thresholds.

Contrast with sampling variability.

A 95% CI is given by φ(θ̂(~1))± 1.96√
N
σ̂φ. We reject φ(θ̂(~1)) + ∆ when

φ(θ̂(~1)) + ∆ ≥ φ(θ̂(~1)) +
1.96√
N
σ̂φ ⇔ ∆

σ̂φ
≥ 1.96√

N.

Ryan Giordano (rgiordan@mit.edu) When Can Dropping a Little Data Make a Big Difference? 13 / 24



What makes an analysis sensitive?

Robust to data dropping:
(“dropping robustness”)

SNR := ∆
σ̂φ
≥ Ŝα

Robust to sampling variation:
(“sampling robustness”)

SNR := ∆
σ̂φ
≥ 1.96√

N

• Dropping robustness 6= sampling robustness in general.
Proof: Ŝα 6= 1.96√

N
.

• When the SNR is small, sufficiently large N produces sampling
robustness, but not necessarily dropping robustness.
Proof: 1.96√

N
→ 0, but Ŝα → a nonzero constant.

• Statistical insignificance is dropping non-robust for large N.
Proof: Insignificance means |φ(θ̂(~1))| ≤ 1.96√

N
σ̂φ.

⇒ A result can be made significant by a change of no more than 1.96√
N
σ̂φ.

⇒ The SNR for a conclusion of “insignificance” is ∆
σ̂φ
≤ 1.96√

N
→ 0 ≤ Ŝα.

• P-hacking is dropping non-robust for large N.
Proof: P-hacked effect sizes are of the order 1.96√

N
σ̂φ.
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N
σ̂φ.
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What makes an analysis sensitive?

Robust to data dropping:
(“dropping robustness”)

SNR := ∆
σ̂φ
≥ Ŝα

Robust to sampling variation:
(“sampling robustness”)
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≥ 1.96√

N
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What makes an analysis sensitive?

Robust to data dropping:
(“dropping robustness”)

SNR := ∆
σ̂φ
≥ Ŝα

Robust to gross errors:
(“gross error robustness”)

Gross outliers cannot produce
arbitrarily large changes to φ.

• Dropping non-robustness is not driven by misspecification.
Proof: Small ∆ are dropping non-robust irrespective of specification.

• Gross outliers primarily affect dropping robustness through σ̂φ.

Proof: For a fixed σ̂φ, outliers decrease Ŝα. (Details in paper.)

Dropping robustness should augment other forms of robustness.
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How to make an analysis less sensitive?

Robust to data dropping:
(“dropping robustness”)

SNR := ∆
σ̂φ
≥ Ŝα

To achieve dropping robustness, reduce σ̂φ and / or increase ∆.

Proof: Across typical distributions, Ŝα varies little. (Details in paper.)

In the Mexico microcredit example,

σ̂φ = 757.8 φ(θ̂(~1)) = −4.55 N = 16, 560

The study overcame a very low signal to noise ratio with a very large N.

This (canonical) response to low signal to noise ratio — to gather more
data — produces small SEs, but cannot produce dropping robustness.
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≥ Ŝα

To achieve dropping robustness, reduce σ̂φ and / or increase ∆.

Proof: Across typical distributions, Ŝα varies little. (Details in paper.)
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Conclusion

You may be concerned if you could reverse your conclusion by
removing a small proportion of your data.

We can quickly and automatically find an approximate influential set
which is accurate for small sets.

Data dropping robustness is principally determined by the signal to
noise ratio, and captures sensitivity distinct from sampling and gross
error sensitivity.
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Links and references

Tamara Broderick, Ryan Giordano, Rachael Meager (alphabetical authors)
“An Automatic Finite-Sample Robustness Metric: Can Dropping a Little Data Change
Conclusions?”
https://arxiv.org/abs/2011.14999

Select blog posts with more details: https://rgiordan.github.io

Data dropping sensitivity overcomes p-hacking

Collinearity in OLS after dropping

Influence functions and sums

Connections to the bootstrap

Related software on github:

rgiordan/zaminfluence (for R)

rgiordan/vittles (for Python)

Some of my work on other forms of robustness:

Prior sensitivity in Bayesian nonparametrics [Giordano et al., 2021]

Approximate cross-validation (and other reweightings) [Giordano et al., 2019b,a]

Covariances and prior sensitivity for mean field VB [Giordano et al., 2015, 2018]

Model sensitivity of MCMC output [Giordano et al., 2018]

Frequentist variances of MCMC posteriors (in progress)
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https://rgiordan.github.io
https://rgiordan.github.io/robustness/2021/09/17/amip_p_hacking.html
https://rgiordan.github.io/amip/2021/12/17/reweighted_colinear_note.html
https://rgiordan.github.io/amip/2021/12/01/influence_is_sum.html
https://rgiordan.github.io/amip/2021/11/08/bootstrap_influence.html
https://github.com/rgiordan/zaminfluence
https://github.com/rgiordan/vittles
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Extra slides

Ryan Giordano (rgiordan@mit.edu) When Can Dropping a Little Data Make a Big Difference? 20 / 24



A simulation

For N = 5, 000 data points, compute the OLS estimator from:

Regressors Residuals Responses
xn ∼ N (0, σ2

x) εn ∼ N (0, σ2
ε) yn = 0.5xn + εn

Figure: The approximate perturbation inducing proportion at differing values of
σx and σε. Red colors indicate datasets whose sign can is predicted to change
when dropping less than 1% of datapoints. The grey areas indicate Ψ̂α = NA, a
failure of the linear approximation to locate any way to change the sign.
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Influence function

The present work is based on the empirical influence function. Consider:

True, unknown distribution function F∞(x) = p(X ≤ x)

Empirical distribution function F̂ (x) = 1
N

∑N
n=1 I (xn ≤ x)

A statistical functional T (F ).
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Influence function

The present work is based on the empirical influence function. Consider:

True, unknown distribution function F∞(x) = p(X ≤ x)

Empirical distribution function F̂ (x) = 1
N

∑N
n=1 I (xn ≤ x)

A statistical functional T (F ).

We estimate with T (F∞) with T (F̂ ).
Sample means are an example:

T (F ) :=

∫
x F (dx).

Z-estimators are, too:

T (F ) := θ such that

∫
G (θ, x)F (dx) = 0.
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Influence function

The present work is based on the empirical influence function. Consider:

True, unknown distribution function F∞(x) = p(X ≤ x)

Empirical distribution function F̂ (x) = 1
N

∑N
n=1 I (xn ≤ x)

A statistical functional T (F ).

Form an (infinite-dimensional) Taylor series expansion at some F0:

T (F ) = T (F0) + T ′(F0)(F − F0) + residual.

When the derivative operator takes the form of an integral

T ′(F0)∆ =

∫
ψ(x ;F0)∆(dx)

then ψ(x ;F0) is known as the influence function.
Where to form the expansion? There are at least two reasonable choices:

The limiting influence function ψ(x ,F∞)

The empirical influence function ψ(x , F̂ )

Ryan Giordano (rgiordan@mit.edu) When Can Dropping a Little Data Make a Big Difference? 22 / 24



Influence function

The limiting influence function (LIF) ψ(x ,F∞)

Used in a lot of classical statistics [Mises, 1947, Huber, 1981,
Hampel, 1986, Bickel et al., 1993]
Unobserved, asymptotic
Requires careful functional analysis [Reeds, 1976]

The empirical influence function (EIF) ψ(x , F̂ )

The basis of the present work (also [Giordano et al., 2019b,a])
Computable, finite-sample
Requires only finite-dimensional calculus

Typically the semantics of the EIF derive from study of the LIF.

Example: 1
N

∑N
n=1(Nψn)2 ≈ Var

(√
Nφ(θ̂)

)
.

But the EIF measures what happens when you perturb the data at hand.

Other data perturbations will admit an analysis similar to ours!

Ryan Giordano (rgiordan@mit.edu) When Can Dropping a Little Data Make a Big Difference? 23 / 24



Local robustness

The present work is an application of local robustness. Consider:

Model parameter λ (e.g., data weights λ = w)

Set of plausible models Sλ (e.g. Sλ = Wα)

Estimator θ̂(x , λ) for data x and λ ∈ Sλ (e.g. a Z-estimator)

Global robustness:
(

infλ∈Sλ θ̂(x , λ), supλ∈Sλ θ̂(x , λ)
)

(Hard in general!)

Local robustness:
(

infλ∈Sλ θ̂
lin(x , λ), supλ∈Sλ θ̂

lin(x , λ)
)

...where θ̂lin(x , λ) := θ̂lin(x , λ0) + ∂θ̂lin(x,λ)
∂λ

∣∣∣
λ0

(λ− λ0).

Many variants are possible!

Cross-validation [Giordano et al., 2019b]

Prior sensitivity in Bayesian nonparametrics [Giordano et al., 2021]

Model sensitivity of MCMC output [Giordano et al., 2018]

Frequentist variances of MCMC posteriors (in progress)
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