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Prelude:
Linear response covariances.




The Bayesian Machinery
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Everything has “hyperparameters”
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Sensitivity
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If the slope is too steep,
04 the model is not robust.
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Actual results calculated with
https://github.com/rgiordan/StanSensitivity



Sensitivity = Covariance

(exchange differentiation and integration)

dE [0]a, X ]
T = CoVp(gja,x)

0,

0
8_()5 lng (9'0&, X)

\ /
|

Some nasty derivative

Covariances, Robustness, and Variational Bayes
RG, Tamara Broderick, Michael Jordan




Classical Bayesian robustness:
Calculate the covariance to estimate the sensitivity

0

— COVp(9|a,X) (9, % logp (9|Oz, X))

) N A

Local Robustness in Bayesian Analysis
Paul Gustafson

dE [0]a, X ]
do




Linear response covariances:
Calculate the sensitivity to estimate the covariance.

dE [0]a, X ] 0

. = Covpgla,x) | 0, o log p (0|, X)

— A

Covariances, Robustness, and Variational Bayes
RG, Tamara Broderick, Michael Jordan




Standard result from sensitivity analysis:

f(t) = argznin (f(0)+19)



Standard result from sensitivity analysis:

0 (t) = argmin (f (0) + t0)

0 —
d_é L 82f (9) - _ An inverse
dt . — 8989 ; Hessian!

—




Part 1.
The standard view of EM.




Parameters and data:

Data: ¥ = (Yl, YN)
Latent 7= (G i)
variables:

Parameters: g ¢ ), C RY



Parameters and data:

Data: Y = (Y, s ¥57) Observed, grows with N
Latent 7= U i) Unobserved, grows with N
variables:

Parameters: g ¢ ), C RV Unobserved, fixed dimension



Parameters and data:

Data: ¥ = (Yl, YN)
Latent 7= (Zas suin)
variables:

Parameters: g ¢ ), C RY

Generative process:

p(0) = A given prior.



Parameters and data:

Data: ¥ = (Yl, YN)
Latent 7= (Zas suin)
variables:

Parameters: g ¢ ), C RY

Generative process:

N
p(210) =[] r(Z.l0)
F=1

p(0)

= A given prior.



Parameters and data:

Data: ¥ = (Yl, YN)
Latent 7= (Zas suin)
variables:

Parameters: g ¢ ), C RY

Generative process:

p (Y16, Z)

p(Z]0) =

p(0)

Hp (Yl Zis, )

N
[]r(Z.10)
F=1

= A given prior.



Equivalent
Parameters and data: generative process:

N
Data: ¥ = (V... ¥w)  p(V1O) = [[ [ p(ValZ0,0)p (Z016) d2,
=l

Parameters: 9 ¢ ), C RP p(0) = A given prior.
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Why not estimate with 0, Z = argmaxp (Y, Z|0) 9
0,7 ¢



Why not estimate with 0, Z = argmax p (Y, Z|0)
0,7 ¢

p(Yn|0) = /p(Yn,anﬁ) AZn # P (an anﬁ)

..unless P (Zn ‘Yna 9) is concentrated.
(Roughly speaking.)



We do EM when:

Hard: p(10) =[] [ »(alZ00)p (Z,16) a2

,’:]2

Easy: p(Y|0,Z2) Yn|Zn, 6)

1

n

Dispersed: Y (Zyi|Ya: 0)



We do EM when:

N
Hard: p(10) = I1 [ p(ValZ0.0)p (Zal0) a2
=1
N
Easy: p(Y10,2) = ][ p(YalZn,0)
n=1
Dispersed:
P (ZnIYn: 0)

(and easy)



Notation for log probabilities.

£(Y']0) =logp (Y|0)

(and in general)



Assume the MLE is nice.

Consistent:

) = argmax ¢ (Y|0)
0c g

>(90

>

N —o0



Assume the MLE is nice.

Consistent: Asymptotically normail:
- . 1 92¢(Y0)
§ = argmax £ (Y'|0 T = —

=y ) N 0000 |;
A 3 p— A—l
o s 0 > = oo

N-roo VRS2 (6 05) s N (0,11

N —o00



Hard to calculate
(by assumption)

— Py

. : 192 (Y|9)
0 = argmax ¢ (Y |0) T = —

e N 0000 |;
a 3 =T
0 ? 90 by

fY=pe VNS ~1/2 (é— 00) S N(0,Ip)

N —o00



The “EM Identity”

Hard

—
/ (Yn|9) - Ep(anyn,G) [5 (Yn|Zn, 9) +/ (ang) —/ (Zn|Yn, 9)]



The “EM Identity”

Hard

l_l_\
((Y|0) =Epiz,1v..0) [ (Y| Zn, 0) + £(Z0|0) — £ (Z,| Yy, 0)]

Easy Easy Easy



Proof.

Apply Bayes’ rule
—_—,
0(Ynl8) = Epz,1v,.0) (€ (Y| Zn, 0) + £(Z4]0) — £(Zy|Yn, 0)]



Proof.

Apply Bayes’ rule
l_l_\

C(Ynl|0) = Epz,1v,0) € (Yn|Zn,0) +£(Z0|0) — £(Zn|Yn, 0)]
— ]Ep(Zn|Yn,9) [(E (Zn|Yn> 9) ok (Yn|9) —d, (an)) +.£ (an) — ik (Zn|Yn7 9)]



Proof.

Apply Bayes’ rule
l_l_\
l (Yn|‘9> — ]Ep(Zn|Yn,9) :E (Yn|Zm 9) -k (Zn|9) — % (Zn|an ‘9)]
=Ep(2,1v,,0) (£ (Z0| Y0, 0) + £ (Y0 |0) — £(21]0)) + £ (Z1|0) — £(Z]Yn, 0)]
=Epz,v,.,0) £ (Yn|0)]




Proof.

Apply Bayes’ rule
l_l_\

14 (Ynle) = ]Ep(anYn,O) :ﬁ (Yn|Zn, 9) +/ (Zn|9) —/ (Zn|Yn, 9)]
=Epz,1v..,0) (£ (Zn|Yn,0) + £ (Yn|0) — £(Z,]0)) +£(Z,]0) — £(Z,|Yn, 0)]
= Ep(2,1v,.,0) [€ (Yn|0)]
= E(Yn|9)




Proof.

£(Yal6) = Epz v, 0) 1€ (Yl Zn, 0) + £(Zal6) — € (Zn| Y, 0)
= ]Ep(anYn,G) (8 (Zn|Yn> 9) +4. (Yn|9) —, (Zn|9)) o - (Zn|9) — & (Zn|Yn> 9)]
= Ep(2,1v,.,0) [€ (Yn|0)]
= {(Y,|0)

This view of EM can simplify some EM proofs.



The “EM Identity”

6 — argmax £ (Y|6) ]- Hard
0eg

= aregrgax Epzive) £(Y|Z,0)+£(Z]0) — £(Z]Y,0)]
€ilg

Easy Easy Easy



The “EM algorithm”
Given iteration k, 0% :

Step 1k. “E step”:

1. Calculate Q™ (6) = E,(z1v.om) V (YZ,0)+ £(Z|0) — ¢ (Z|Y, 9(’“))]

Fixed A function of 6 Fixed

(typically
omitted)



The “EM algorithm”

Given iteration k, %)

A function of 6
Step 1k. “E step”: l ]

1. Caleulate Q) (8) =B,y giry € (Y12,0) + £(219) — £ ( Z]Y,6®)]

Step 2k. “M step”:

Calculate 0%tV = argmax Q*) ()
=

...repeat.



EM algorithm # EM identity



Under nice conditions, the EM algorithm solves the same
optimization problem as the MLE.

(k) s 0

N —o0

But what about covariances?



What about covariances?

We want the Hessian of the marginal log likelihood:

92¢ (Y'|6)
9000

>



What about covariances?

We want the Hessian of the marginal log likelihood:

92¢ (Y'|6)
9000

0
All we have is the Q function:

Q(0) = Eyzv) |¢ (Y12,0) + £(210) — £ (2]Y,0))]



What about covariances?

...but the Hessians are not the same.

92¢ (Y0)

92Q (0)
0000 7

j 0006

Q(0) = Eyzv) |¢ (Y12,0) + £(210) — £ (2]Y,0))]



...but the Hessians are not the same.

02 (Y'|) 0?
- Epziv,0) € (Y]Z,0) + £(Z|0) — £(Z]Y,0)]
9000 |, 9000 "ZM0) ;

(by the EM identity)



...but the Hessians are not the same.

924 (Y'|9)

0000

0

£

82

» o\ N

B2 1vm0) | (Y12,0) + £ (210) — € (21, 0)]

~

0

(fix the “E step”)



...but the Hessians are not the same.

82
= Epziv,0) € (YZ,0) +£(Z]0) — £(Z]Y,0)]
;0009 PEMO)

02 )
7 5906 p(ZlYn0) [E (Y]2,0) +£(2]0) — ¢ (Z|Y’ 9)]
9*Q (9)
0000

924 (Y'|9)
9000

~

0

~

0

0

(by definition)



...but the Hessians are not the same.

9% (Y|6) 4 9%Q (0)
9000 |;7 9000

D

Standard work-arounds are kinda complicated®.

And what about uncertainty in Z7?

e Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, Meng et al., 2001
e Direct calculation of the information matrix via the EM algorithm, Oakes, 1999
e The EM algorithm and extensions, McLachlan, G. and T. Krishnan, 2007



A Bayesian view of EM.




Let’s calculate the posterior.

p(Y|Z,0)p(Z|0)p(6)

p(972|Y) — p(Y)



Let’s calculate the posterior.

Hard

A
J |

p(Y|Z,0)p(Z]0)p(9)
p(Y)

p(0,2]Y) =



Let’s ealettate approximate the posterior.

Hard

A
| |

p(Y|Z,0)p(Z]0)p(0)
p(Y)

p(97Z|Y) —



Let’s ealettate approximate the posterior.

p(0,Z]Y) = p(Y|Z,0)p(Z|0)p(0)

p(Y)

Variational Bayes (VB): find a g(6,Z) that is
(a) Easy to deal with and
(b) Close to p(6,Z1Y) in some sense



Variational Bayes.

Define a class of approximating distribution.

q(0,Z]9,¢) := 0 (0 — ) q(Z[¢)



Variational Bayes.

Define a class of approximating distribution.

Degenerate at ¢

q(0,2]9,¢) := 0 (0 =) q(Z|()

Non-degenerate, in some
parametric family: q(Z|¢) € Q



q(0,2]9,¢) := 0 (0 = 7) q(Z|()

q(619)

q(Z|)

=39



Variational Bayes.

Estimate using a Kullback-Leibler (KL)-like divergence.

9,¢ = srgmin KL(q(8,2Z19,0) ||p (8, Z]Y))



KL(q (8, Z]9,¢) |Ip (8, Z]Y))

=Eq0,219,¢) log 4 (Z|Q)] — Eq0,z19,¢) £ (0, Z|Y)]

\ J
|

Entropy of 0 is missing -- in
this sense it’s not a real KL
divergence




KL(q (8, Z]9,¢) |Ip (8, Z]Y))

= Eq0,219,¢) log ¢ (Z]C)] — Eq0,z19,0) £ (8, Z]Y)]
= Ey(z|¢) log ¢ (Z[¢) — £(9, Z|Y)]



KL(q(0, Z9,¢)|Ip (6, 2]Y))
=Eq0,219,¢) log 4 (Z|Q)] — Eq0,z19,¢) £ (0, Z|Y)]

= Eq(z(¢) [log ¢ (Z]C) — £(9, Z]Y')]
=Eq(zc) log ¢ (Z|¢) — (L (Y|Z,9) + £ (Z|9) — £(9) + £ (V)]



KL (q(6,2]9,0)]lp(8,Z]Y))

=Eq0,219.¢) log 4 (Z|C)] — Eq(0,29,¢) € (0, Z]Y)]

=Ey(z|¢) log ¢ (Z[¢) — £(9, Z|Y)]

= Eyz10) [log ¢ (Z|¢) — (L (Y|Z,9) + £(Z]|9) — £(9) + £ (Y))]
= —Eqzi0) I (Y]Z,9) + £(Z]9) — £(9) —logq (Z|()] + £ (Y)

Contrast with the EM identity.

£(Y10) = Epz)v,0) € (Y]Z,0) + £(Z]0) — £(Z]Y,0)]



Proposition: VB = EM
(Neal and Hinton, 1998)

Supposethat p(Z|0,Y) € O,V0 € Qy

Then the VB and EM optima are the same:

|
D>

9

q (Zlf)

P (Z\Y, é)



Proposition: VB = EM
(Neal and Hinton, 1998)

We can always find a parametric class Q that satisfies this condition.
(Why?)

p(Z|0,Y) € Q,V0 € Q



Proposition: VB = EM
(Neal and Hinton, 1998)

From now on g will be used for the conditional
distribution of Z.

1(218) =p (21v6)



Proposition: VB = EM
(Neal and Hinton, 1998):

In fact, the EM algorithm is coordinate ascentin 1/, ( .



Proposition: VB = EM

(Neal and Hinton, 1998):
Given iteration k, 9% ¢(*)
Step 1k. “E step”:

Calculate ¢*+Y = argmin K L (q (9, Z|9® g) 1p (6, Z|Y>)
G



Proposition: VB = EM

(Neal and Hinton, 1998):
Given iteration k, 9, ¢
Step 1k. “E step”:

Calculate ¢*+Y = argmin K L (q (9, Z|9® g) 1p (6, Z|Y))
G

Step 2k. “M step”:

Calculate 9*+1) = argmin KL (q (9, Z v, gt(kﬂ)) p (0, Z|Y))
9

...repeat.



Who uses coordinate ascent?

0,¢



Part 3:
Covariance asymptotics.




Assumption : Bayesian CLT.
Bernstein-von Mises (BVM) theorem

.1 9% (Y)6)
Too =~ B0 N 0000 |,

Covariance from the Laplace
approximation

Asymptotic Statistics, van der Vaart, 2007.



Assumption : Bayesian CLT.
Bernstein-von Mises (BVM) theorem

oo o L 0%( (Y|6)
9 =~ e N~ 9000

0

p (mz;g2 (9 _ é) |Y) . N (0, Ip)

N —o00

Asymptotic Statistics, van der Vaart, 2007.



Assumption : Bayesian CLT.
Bernstein-von Mises (BVM) theorem

The posterior on 0 goes to

a degenerate distribution
A

p (\/Nzgf (9 _ é) |Y) . N (0, Ip)

N —o0

Asymptotic Statistics, van der Vaart, 2007.



How good are the VB approximation’s covariances?

1 :
Covpgyy (0) & N = 10 (\/N) Bayesian CLT



How good are the VB approximation’s covariances?

1 :
Covpgyy (0) & N = 10 (\/N) Bayesian CLT

0 Degenerate

C 2 (0) =
Vq(019) (6) approximation



How good are the VB approximation’s covariances?

1 :
Covpgyy (0) & N = 10 (\/N) Bayesian CLT

0 Degenerate
approximation

COVP(9|y) (9) — COVq(9|1§) (9) = Op (\/N)

COVq(9|1§) (9) ==



What about the variance of Z2?

COVp(Zn|y) (Zn) 7 COVp(Zn|Y,9:é) (Zn) 7é 0

N — 00

q(Z12)

B W




What about the variance of Z2?

COVp(Zn|y) (Zn) 7 COVp(Zn|Y,9:é) (Zn> 7é 0

I

COVQ(Zn|é) (Zn)

N — 00



What about the variance of Z2?

COVp(Zn|y) (Zn) 7 COVp(Zn|Y,9:é) (Zn> 7é 0

I

COVQ(Zn|é) (Zn)

N — 00

Therefore, trivially,

COVp(Z 1Y) ( ) COVq(ané) (Zn) = Op (1)



What about the variance of Z2?

COVp(Zn|y) (Zn) 7 COVP(Zn|Y,9:é) (Zn) 7é 0

I

COVQ(Zn|é) (Zn)

N — 00

Only slightly less trivially:

Covp(z,1v) (Zn) = Cov (5. 16y (Zn) = 0p (V)



Can these naive approximations be improved?

Let’s try linear response covariances.



Linear response covariances reminder.

0

dE [0]a, X ]
. = Covp(g|a,X) (9, o IOgP(9|04>X)>

— A




dE [0]a, X ] 0
. — Covp(0|a,X) (07 -8_()5 lng (Hl()f, X)>

) N A

A (t) = argrgnin (f(0)+10)
| [2f )\
(5 1)



0

© 0|, X ]

= Covp(9|a,X) (97 a lng (9|()5, X)>

do O

Define a perturbation:

p(0,Z|Y,t) < p(0, Z|Y)exp (10)



0

— COVp(9|a,X) (9, % logp (9|Oz, X))

dE [0]a, X ]
do

Define a perturbation:

p(0,Z|Y,t) < p(0, Z|Y)exp (10)

dEp0,z|v,t) |0]
dt

— COVp(g,ZD/) (9)
t=0



0

— COVp(9|a,X) (9, % logp (9|Oz, X))

dE [0]a, X ]
do

Define a perturbation:

p(0,Z|Y,t) < p(0, Z|Y)exp (10)

do (1) dE,0,2|v.t) |0)

dt - dt
t=0

— COVp(O,Z|Y) (9)
t=0



Sensitivity requires the Hessian of the optimum.

Fixed dimension

7. d°KL(n)| _ ( Hog Heg)
- dndnT Heop  Hee

A

Grows
with N

I

U ESS



Linear response covariances for theta.

7. d°KL(n)| _ ( Hpo Ho¢ )
- dndnT Heop  Heg




Linear response covariances for theta.

7. d°KL(n)| _ ( Hpo Ho¢ )
- dndnT Heop  Heg

Z:H—lz( 299 ZOC )
2ico  2c¢



Linear response covariances for theta.

7. d*KL(n)| ( Hgg Hy¢ )
- dndnT Heg  Hee

Z:H_lz( 299 ZOC )
2ico  2c¢

3wt Covin (0) = oo



Proposition 1:

With a flat prior, linear response posterior covariances for 6 and
classical frequentist covariance estimates are the same.




Proposition 1 proof.

KL (9,¢) = —Eq(z(¢) [¢ (Y]2,9) + £(Z]9) — log q (Z|¢)] + £ (V)

Definition, flat prior.




Proposition 1 proof.

KL (9,¢) = —Eq(z(¢) [¢ (Y]2,9) + £(Z]9) — log q (Z|¢)] + £ (V)

Define

¢ (9) = argmin KL (¥, ()
G

1(21C(0)) = p(2]Y,0)

Completeness of VB
approximation.




Proposition 1 proof.

KL, (ﬁ,é(ﬁ)) = —E,(7160)) [E(Y|Z,z9) +4(Z|9) —logg (Z|§ (ﬁ)ﬂ +O(Y)

Definition.



Proposition 1 proof.

KL (9,C (9)) = —Ey(z60y) [((Y12,9) +£(Z19) —10gq (21 (9)) | +£(¥)
= —Epiziva0) [ (Y|Z,9) +£(Z]9) — £(Z]Y,0)] + £(Y)

Completeness of VB
approximation.



Proposition 1 proof.

KL, (ﬁ,é(ﬁ)) = —E,(7160)) V(Y|Z 9) + £ (Z|9) —log g (Z|é( ))] FOY)
= —E,z1v.0) L (Y]Z,9) + £ (Z]9) — £(Z|Y,9)] + £(Y)
=—L(Y]9) +£(Y).

The EM identity.



Proposition 1 proof.

All these perturbed optimization problems are the same:

(t) = argmax — KL (¢4,¢) + t¥
,ﬁ’c

5(t) = argmax — KL (19, ¢ (19)) +
9

N>

9 (1),

D

(t) = argmax £ (Y|0) + t0
0

NO DD

d(t) =9 () =6 ()




Recall our Q-function

Q0) =E, 2y, [z (Y|Z,0) +¢(Z]0) — ¢ (Z|Y> 9)]



Recall our Q-function

Q0) =E, 2y, [£(Y|z,9) +£(Z10) — ¢ (ZIY, 9)]

This is the Hessian of
the Q-function

Hpg Hp¢ )
H =
( Heg Hee



Recall our Q-function

Q0) =E, 2y [E(YlZ,G) +£(Z]0) — ¢ (ZIY, é)]

This is the Hessian of This is the linear
the Q-function response covariance

Hpg Hy¢ - ( 200 2oc )
H = 2= i =
( Heo  Hec ) 20 e



92¢ (Y'|)

02Q (9)
0006 7

5 06000

This is the Hessian of
the Q-function

—

Hpp Hp )
H —
( Heo Heg

—q 1
2gg 7 Hyg

This is the linear
response covariance

—

EZH—1:(299 294)

2ico e



Theorem 1:

The linear response covariances add a root-N order of accuracy
to the following covariances.

— 1
COVP((ﬂy) (9) — COVLR (9) = OP (—)




Theorem 1:

The linear response covariances add a root-N order of accuracy
to the following covariances.

i 1
C'OVp((ﬂY) (9) — COVLR (9) = Op (N

= 1
Covp(g|y) (0, Zn) — Covir (0, Zn) = 0p (N>




Theorem 1:

The linear response covariances add a root-N order of accuracy
to the following covariances.

Covyapy) (0) — Covir (6) = 0, (

COVp(9|Y) (9 Z-n.) — C/(;’LR (9 Zn) = Op (

Covyv) (Zny Zm) — Cov LR (Zn, Zm) = 0p (for n # m)

)
)
)

= = = e =




What about Z?

q(ZI¢)

/\Z

|



What about Z?
And what about these other Hessian terms?

q(Z12)

3 — H—l _ ( 299 ZOC

2ico 2
//\z

|

)



What about Z?

Results are best expressed in
terms of the score function and
its variance.

X 810gQ(ZnIC)
L) i=

o ‘ Vi 1= COVq(ané) (/7\/ (Zn))

q(ZI¢)




What about Z?

If g is in the exponential family, y
(Z) are sufficient statistics.

q(ZI¢)

X 810gQ(ZnIC)
/\Z = 5-

‘ Vi 1= COVq(ané) (/7\/ (Zn))



Proposition 2:

The linear response covariances of the normalized score
function are given by the inverse Hessian of the KL divergence.

Covrr (Vi 4 (Zn) = Z.c,

A dlogq(Z,|C
3 (2,) = SELE)

Vi i= Cov,z 1) (3 (Z0)

T



Theorem 2:

The linear response covariances improves the constant, but not
the rate, of the covariances of the score function.




Theorem 2:

The linear response covariances improves the constant, but not
the rate, of the covariances of the score function.

Error when using the degenerate approximation for p(0):

N
CO\/ (6]Y) (IEIJ(ZIYG) [;:f (Z)])

Covp(e.z|v) (5 (Z)) — Cov 2(216) (7(2)) = (IE (2216) [: (Z)3} + 1) Op (%) +



Theorem 2:

The linear response covariances improves the constant, but not
the rate, of the covariances of the score function.

Skewness (small when q is approximately symmetric).

A
| |

) 5 A P 1
Covpto z1v) (1 (2)) = Covy(1¢) (V(2)) = (By(zie) [1(2)°] +1) (\/—T) ’

(j(_)\"p((”}"’) (Ep(Z| Y.0) [/:* (Z)])

\ J
|

( 1 )
Op
N

ﬁ




Theorem 2:

The linear response covariances improves the constant, but not
the rate, of the covariances of the score function.

Covp.a) (3(2)) = Covy1e) (120 = (yz) [12] +1) on (75 ) +
Covya1y) (IEp(Z|Y.0) [”Af(Z)])

Error when using linear response covariances:

Covyo 21y (3 (2)) — CIO\VLR (4(2)) = (IE (2.1¢) [2 (Z)'*] + 1) Op (\/%)




Theorem 3:

For covariances of functions of Z other than linear combinations
of the score functions, linear response is inconsistent.




Theorem 3:

For covariances of functions of Z other than linear combinations
of the score functions, linear response is inconsistent.

Covp,2v) (h (Z,)) — Covir (h(Z,)) =0, (1)

Practical workarounds:
® Increase the expressivity of g
e Use Monte Carlo instead of linear response



Tools.




“However, analytical evaluation of the second-order
derivatives of the incomplete-data log likelihood may be
difficult or at least tedious. Indeed, often it is for reasons of
this nature that the EM algorithm is used to compute the MLE

in the first place.”

The EM Algorithm and Extensions, McLachlan (2008)



“However, analytical evaluation of the second-order
derivatives of the incomplete-data log likelihood may be
difficult or at least tedious. Indeed, often it is for reasons of
this nature that the EM algorithm is used to compute the MLE

in the first place.”

The EM Algorithm and Extensions, McLachlan (2008)

Automatic differentiation makes everything easy.




Automatic e-steps (for conjugate Z distributions):




But why bother with an e-step?

ihood(z, log z, theta, y):

get marginal log lik = get gamma marginal log lik(log posterior)

y = load data()
theta hat = optimize(lambda theta: get marginal log lik(theta, y))

This is what | actually do in practice.




And covariances are now easy.

likelihood(z, log z, theta, y):

e J

get marginal log lik = get gamma marginal log lik(log posterior)

y = load data()
theta hat = optimize(lambda theta: get marginal log lik(theta, y))

cov theta kK -1 * np.linalg.inv(
autograd.hessian(get marginal log lik)(theta hat, y))

(...and quite a lot of academic literature is obsolete.)




Paragami: “Parameter origami”

https://qgithub.com/rgiordan/paragami

Converts parameter dictionaries and the functions that
consume or return them between “folded” and “flat”
representations.

All transformations are differentiable by autograd.



Paragami: “Parameter origami” https:/github.com/rgiordan/paragami

Define “patterns” that describe your structured parameter sets.

[3] 2 mvn_pattern = paragami.PatternDict(free_default=True)
mvn_pattern['mean'] = paragami.NumericVectorPattern(length=dim)
mvn_pattern['cov'] = paragami.PSDSymmetricMatrixPattern(size=dim)



Paragami: “Parameter origami” https:/github.com/rgiordan/paragami

[36% true_mvn_par = dict()
true_mvn_par['mean'] = mean_true
true_mvn_par['cov'] = cov_true

print('\nA dictionary of MVN parameters:\n{}'.format(
true_mvn_par))

mvn_par_free = mvn_pattern.flatten(true_mvn_par)
print('\nA flat representation:\n{}'.format(
mvn_pattern.flatten(true_mvn_par)))

print('\nFolding recovers the original parameters:\n{}'.format(
mvn_pattern.fold(mvn_par_free)))

A dictionary of MVN parameters:
{'cov': array([[1.1, 1. ],
[1. , 1.1]]), 'mean': array([0.87367236, 0.21280422])}

A flat representation:
[ ©.87367236 ©0.21280422 ©0.04765509 0.95346259 -0.82797896]

Folding recovers the original parameters:
OrderedDict([('mean', array([0.87367236, 0.21280422])), ('cov', array([[1.1, 1. ],

(1. , 1.111))1)
D



Vittles:
“Variational inference tools to leverage estimator sensitivity”

Calculates Taylor series approximations (to arbitrary order) of the
dependence of optima on hyperparameters.

Linear response covariances are a special case.



Vittles:

“Variational inference tools to leverage estimator sensitivity”
https://qgithub.com/rgiordan/vittles

optimal parameters = optimize(get flat kl divergence)

get lrvb cov = vittles.LinearResponseCovariances (
get flat kl divergence,
optimal parameters)

Lrvb cov = get 1lrvb cov.get 1r covariance(
get posterior moments from parameters)




Thank you for your attention!




Extra topics (in case anyone asks)




The Laplace approximation and linear
response covariances.




Example: the Laplace approximation.

) = argmax log p (A|z)
0y



Example: the Laplace approximation.

) = argmax log p (A|z)
0y

%01 x) 160] = 0




Cleverly chosen
perturbation

Fi_\

f (o) = argmax log p (0]z) + o
0e(g



Cleverly chosen
perturbation

5

0 (o) = argmax logp (0]z) + ab

0y
Chosen so that this term
becomes 0
{ )
dE [0|a, X] 0
. = Covp(4|a,x) (9, o 10gp(9|04»X))



Cleverly chosen
perturbation

/_A_\

0 (o) = argmax log p (0]z) + o
0y

01%.0) [0] = 0 ()




f (o) = argmax log p (0]z) + o
0cg

Effect of tilting on exact posterior
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COVP(9|X) (9)

(0] X,a) [0]

do

a=0



COVP(9|X) (9)

2

dEp6)x ) 0]

do
df ()

do

a=0

a=0



COVP(9|X) (9)

2

dEp9)x,0) [0]
do
df ()
do

a=0

a=(

) (@2 log p (0])

0000




In principle, linear response covariances can be calculated for
any optimization-based posterior approximation.

Exact posterior and approximations Posterior means vs amount of tilting
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Hessian picture




Here there be zeros

Fixed dimension
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