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Sensitivity

Actual results calculated with 
https://github.com/rgiordan/StanSensitivity



Sensitivity = Covariance
(exchange differentiation and integration)

Covariances, Robustness, and Variational Bayes
RG, Tamara Broderick, Michael Jordan

Some nasty derivative 



Local Robustness in Bayesian Analysis
Paul Gustafson

Classical Bayesian robustness:
Calculate the covariance to estimate the sensitivity



Linear response covariances:
Calculate the sensitivity to estimate the covariance.

Covariances, Robustness, and Variational Bayes
RG, Tamara Broderick, Michael Jordan



Standard result from sensitivity analysis:



Standard result from sensitivity analysis:

An inverse 
Hessian!



Part 1:
The standard view of EM.
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Parameters and data:
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Why not estimate with ?



Why not estimate with ?

...unless is concentrated.  
(Roughly speaking.)
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Hard:

Easy:

We do EM when:

Dispersed: 
(and easy)



Notation for log probabilities.

(and in general)



Assume the MLE is nice.

Consistent:



Assume the MLE is nice.

Consistent: Asymptotically normal:



Hard to calculate
(by assumption)



The “EM Identity”

Hard



The “EM Identity”

Hard

Easy Easy Easy



Proof.

Apply Bayes’ rule
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Proof.

This view of EM can simplify some EM proofs.



The “EM Identity”

Hard

Easy Easy Easy



The “EM algorithm”

Step 1k.  “E step”:

Fixed A function of θ Fixed
(typically 
omitted) 



The “EM algorithm”

Step 1k.  “E step”:

Step 2k.  “M step”:

...repeat.

A function of θ 



EM algorithm ≠ EM identity



Under nice conditions, the EM algorithm solves the same 
optimization problem as the MLE.

But what about covariances?



What about covariances?

We want the Hessian of the marginal log likelihood:



What about covariances?

All we have is the Q function:

We want the Hessian of the marginal log likelihood:



What about covariances?

...but the Hessians are not the same.



...but the Hessians are not the same.

(by the EM identity)



...but the Hessians are not the same.

(fix the “E step”)



...but the Hessians are not the same.

(by definition)



...but the Hessians are not the same.

Standard work-arounds are kinda complicated*.

And what about uncertainty in Z?

● Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm, Meng et al., 2001
● Direct calculation of the information matrix via the EM algorithm, Oakes, 1999
● The EM algorithm and extensions, McLachlan, G. and T. Krishnan, 2007



A Bayesian view of EM.



Let’s calculate the posterior.



Let’s calculate the posterior.

Hard



Let’s calculate approximate the posterior.

Hard



Let’s calculate approximate the posterior.

Variational Bayes (VB):  find a q(θ,Z) that is
(a) Easy to deal with and
(b) Close to p(θ,Z|Y) in some sense



Variational Bayes.

Define a class of approximating distribution.



Variational Bayes.

Define a class of approximating distribution.
Degenerate at 𝜗

Non-degenerate, in some 
parametric family:





Variational Bayes.

Estimate using a Kullback-Leibler (KL)-like divergence.



Entropy of 𝜽 is missing -- in 
this sense it’s not a real KL 

divergence







Contrast with the EM identity.



Proposition: VB = EM
(Neal and Hinton, 1998)

Suppose that

Then the VB and EM optima are the same: 



We can always find a parametric class Q that satisfies this condition.
(Why?)

Proposition: VB = EM
(Neal and Hinton, 1998)



From now on q will be used for the conditional 
distribution of Z.

Proposition: VB = EM
(Neal and Hinton, 1998)



Proposition: VB = EM
(Neal and Hinton, 1998):

In fact, the EM algorithm is coordinate ascent in .



Proposition: VB = EM
(Neal and Hinton, 1998):

Step 1k.  “E step”:



Proposition: VB = EM
(Neal and Hinton, 1998):

Step 1k.  “E step”:

Step 2k.  “M step”:

...repeat.



Who uses coordinate ascent?



Part 3:
Covariance asymptotics.



Assumption : Bayesian CLT. 
Bernstein-von Mises (BVM) theorem

Asymptotic Statistics, van der Vaart, 2007.

Covariance from the Laplace 
approximation



Assumption : Bayesian CLT. 
Bernstein-von Mises (BVM) theorem

Asymptotic Statistics, van der Vaart, 2007.



Assumption : Bayesian CLT. 
Bernstein-von Mises (BVM) theorem

Asymptotic Statistics, van der Vaart, 2007.

The posterior on 𝜃 goes to 
a degenerate distribution



How good are the VB approximation’s covariances?

Bayesian CLT



Degenerate 
approximation

Bayesian CLT

How good are the VB approximation’s covariances?



Consistent!
(But trivial.)

Degenerate 
approximation

Bayesian CLT

How good are the VB approximation’s covariances?



What about the variance of Z?



What about the variance of Z?



What about the variance of Z?

Therefore, trivially,



Only slightly less trivially:

What about the variance of Z?



Can these naive approximations be improved?

Let’s try linear response covariances.



Linear response covariances reminder.





Define a perturbation:



Define a perturbation:



Define a perturbation:



Sensitivity requires the Hessian of the optimum.

Grows 
with N

Fixed dimension



Linear response covariances for theta.



Linear response covariances for theta.



Linear response covariances for theta.



Proposition 1: 

With a flat prior, linear response posterior covariances for 𝜃 and 
classical frequentist covariance estimates are the same. 



Proposition 1 proof.

Definition, flat prior.



Proposition 1 proof.

Completeness of VB 
approximation.

Define



Proposition 1 proof.

Definition.



Proposition 1 proof.

Completeness of VB 
approximation.



Proposition 1 proof.

The EM identity.



Proposition 1 proof.

All these perturbed optimization problems are the same:



Recall our Q-function



Recall our Q-function

This is the Hessian of 
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This is the Hessian of 
the Q-function

This is the linear 
response covariance



Theorem 1: 

The linear response covariances add a root-N order of accuracy 
to the following covariances.



Theorem 1: 

The linear response covariances add a root-N order of accuracy 
to the following covariances.



Theorem 1: 

The linear response covariances add a root-N order of accuracy 
to the following covariances.



What about Z?



What about Z?

And what about these other Hessian terms?



What about Z?

Results are best expressed in 
terms of the score function and 

its variance.



What about Z?

If q is in the exponential family, 𝛾
(Z) are sufficient statistics.



Proposition 2: 

The linear response covariances of the normalized score 
function are given by the inverse Hessian of the KL divergence.



Theorem 2: 

The linear response covariances improves the constant, but not 
the rate, of the covariances of the score function.



Error when using the degenerate approximation for p(𝜃):

Theorem 2: 

The linear response covariances improves the constant, but not 
the rate, of the covariances of the score function.



Skewness (small when q is approximately symmetric).

Theorem 2: 

The linear response covariances improves the constant, but not 
the rate, of the covariances of the score function.



Theorem 2: 

The linear response covariances improves the constant, but not 
the rate, of the covariances of the score function.

Error when using linear response covariances:



Theorem 3: 

For covariances of functions of Z other than linear combinations 
of the score functions, linear response is inconsistent.



Theorem 3: 

For covariances of functions of Z other than linear combinations 
of the score functions, linear response is inconsistent.

Practical workarounds:
● Increase the expressivity of q
● Use Monte Carlo instead of linear response



Tools.



“However, analytical evaluation of the second-order 
derivatives of the incomplete-data log likelihood may be 
difficult or at least tedious.  Indeed, often it is for reasons of 
this nature that the EM algorithm is used to compute the MLE 
in the first place.”

- The EM Algorithm and Extensions, McLachlan (2008)



“However, analytical evaluation of the second-order 
derivatives of the incomplete-data log likelihood may be 
difficult or at least tedious.  Indeed, often it is for reasons of 
this nature that the EM algorithm is used to compute the MLE 
in the first place.”

- The EM Algorithm and Extensions, McLachlan (2008)

Automatic differentiation makes everything easy.



Automatic e-steps (for conjugate Z distributions):



But why bother with an e-step?

This is what I actually do in practice.



And covariances are now easy.

(...and quite a lot of academic literature is obsolete.)



Paragami: “Parameter origami”
  

https://github.com/rgiordan/paragami

Converts parameter dictionaries and the functions that 
consume or return them between “folded” and “flat” 
representations.  

All transformations are differentiable by autograd. 



Paragami: “Parameter origami”   https://github.com/rgiordan/paragami

Define “patterns” that describe your structured parameter sets.



Paragami: “Parameter origami”   https://github.com/rgiordan/paragami



Vittles: 
“Variational inference tools to leverage estimator sensitivity” 

  https://github.com/rgiordan/vittles

Calculates Taylor series approximations (to arbitrary order) of the 
dependence of optima on hyperparameters.

Linear response covariances are a special case.



Vittles: 
“Variational inference tools to leverage estimator sensitivity” 

  https://github.com/rgiordan/vittles



Thank you for your attention!



Extra topics (in case anyone asks)



The Laplace approximation and linear 
response covariances.



Example: the Laplace approximation.



Example: the Laplace approximation.



Cleverly chosen 
perturbation



Cleverly chosen 
perturbation

Chosen so that this term 
becomes 𝜃



Cleverly chosen 
perturbation











In principle, linear response covariances can be calculated for 
any optimization-based posterior approximation. 



Hessian picture



Grows 
with N

Fixed dimension

Here there be zeros


